in

Genetic and demographic history define a conservation strategy for earth’s most endangered pinniped, the Mediterranean monk seal Monachus monachus

  • 1.

    Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).

    PubMed  Article  Google Scholar 

  • 2.

    Said, M. Y. et al. Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. J. Nat. Cons. 34, 151–164 (2016).

    Article  Google Scholar 

  • 3.

    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 1–617 (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  • 4.

    Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mammal. 78, 320–335 (1997).

    Article  Google Scholar 

  • 5.

    Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Marín, J. C. et al. Mitochondrial phylogeography and demographic history of the vicuna: Implications for conservation. Heredity 99, 70–80 (2007).

    PubMed  Article  CAS  Google Scholar 

  • 7.

    Karamanlidis, A. A. & Dendrinos, P. Monachus monachus. The IUCN Red List of Threatened Species 2015: e.T13653A45227543 (2015).

  • 8.

    Karamanlidis, A. A. et al. The Mediterranean monk seal Monachus monachus: Status, biology, threats, and conservation priorities. Mamm. Rev. 46, 92–105 (2016).

    Article  Google Scholar 

  • 9.

    Karamanlidis, A. A., Adamantopoulou, S., Tounta, E. & Dendrinos, D. Monachus monachus Eastern Mediterranean subpopulation. The IUCN Red List of Threatened Species 2019, e.T120868935A120869697 (2019).

  • 10.

    Dendrinos, D. et al. LIFE-IP 4 NATURA: Integrated actions for the conservation and management of Natura 2000 sites, species, habitats and ecosystems in Greece. Deliverable Action A.1: Action Plan for the Mediterranean monk seal (Monachus monachus). 1–105; Annexes 112p (Hellenic Ministry of Environment and Energy, 2020).

  • 11.

    Piggott, M. P. & Taylor, A. C. Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl. Res. 30, 1–13 (2003).

    Article  Google Scholar 

  • 12.

    Pastor, T. et al. Genetic diversity and differentiation between the two remaining populations of the critically endangered Mediterranean monk seal. Anim. Conserv. 10, 461–469 (2007).

    Article  Google Scholar 

  • 13.

    Karamanlidis, A. A. et al. Shaping species conservation strategies using mtDNA analysis: The case of the elusive Mediterranean monk seal (Monachus monachus). Biol. Conserv. 193, 71–79 (2016).

    Article  Google Scholar 

  • 14.

    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).

    PubMed  Article  Google Scholar 

  • 15.

    Rey-Iglesia, A. et al. Mitogenomics of the endangered Mediterranean monk seal (Monachus monachus) reveals dramatic loss of diversity and supports historical gene-flow between Atlantic and eastern Mediterranean populations. Zool. J. Linn. Soc. 20, 1–13 (2020).

    Google Scholar 

  • 16.

    Dayon, J. et al. Development and characterization of nineteen microsatellite loci for the endangered Mediterranean monk seal Monachus monachus. Mar. Biodiv. 50, 1–7 (2020).

  • 17.

    Brandström, M. & Ellegren, H. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Gen. Res. 18, 881–887 (2008).

    Article  CAS  Google Scholar 

  • 18.

    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley, New York, 2009).

    Google Scholar 

  • 19.

    Tokarska, M., Pertoldi, C., Kowalczyk, R. & Perzanowski, K. Genetic status of the European bison Bison bonasus after extinction in the wild and subsequent recovery. Mamm. Rev. 41, 151–162 (2011).

    Article  Google Scholar 

  • 20.

    Casas-Marce, M. et al. Spatio-temporal dynamics of genetic variation in the Iberian Lynx along its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol. 34, 2893–2907 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Hasselgren, M. et al. Genetic rescue in an inbred Arctic fox (Vulpes lagopus) population. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 285, 20172814 (2018).

    Google Scholar 

  • 22.

    Mills, L. S. & Allendorf, F. W. The One-Migrant-per-Generation rule in conservation and management. Conserv. Biol. 10, 1509–1518 (1996).

    Article  Google Scholar 

  • 23.

    Heber, S. et al. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 280, 20122228 (2013).

    CAS  Google Scholar 

  • 24.

    Greenbaum, G., Templeton, A. R., Zarmi, Y. & Bar-David, S. Allelic richness following population founding events—A stochastic modeling framework incorporating gene flow and genetic drift. PLoS ONE 9, e115203 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Vucetich, J. A. & Waite, T. A. Is one migrant per generation sufficient for the genetic management of fluctuating populations?. Anim. Conserv. 3, 261–266 (2000).

    Article  Google Scholar 

  • 26.

    Waples, R. S. in: Population viability analysis (eds S.R. Beissinger & D.R. McCullough), 147–168 (University of Chicago Press, 2002).

  • 27.

    Lynch, M. & Lande, R. The critical effective size for a genetically secure population. Anim. Cons. For. 1, 70–72 (1998).

    Article  Google Scholar 

  • 28.

    Johnson, C. N. Sex-biased philopatry and dispersal in mammals. Oecologia 69, 626–627 (1986).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Oosthuizen, W. C. et al. Dispersal and dispersion of southern elephant seals in the Kerguelen province, Southern Ocean. Antarct.sSci. 23, 567–577 (2011).

    ADS  Article  Google Scholar 

  • 30.

    Fabiani, A., Galimberti, F., Sanvito, S. & Hoelzel, A. R. Relatedness and site fidelity at the southern elephant seal, Mirounga leonina, breeding colony in the Falkland Islands. Anim. Behav. 72, 617–626 (2006).

    Article  Google Scholar 

  • 31.

    Hofmeyr, G. J. G., Kirkman, S. P., Pistorius, P. A. & Bester, M. N. Natal site fidelity by breeding female southern elephant seals in relation to their history of participation in the winter haulout. Afr. J. Mar. Sci. 34, 373–382 (2012).

    Article  Google Scholar 

  • 32.

    Dendrinos, P. et al. Pupping habitat use in the Mediterranean monk seal: A long-term study. Mar. Mamm. Sci. 23, 615–628 (2007).

    Article  Google Scholar 

  • 33.

    Gücü, A. C., Gücü, G. & Orek, H. Habitat use and preliminary demographic evaluation of the critically endangered Mediterranean monk seal (Monachus monachus) in the Cilician Basin (Eastern Mediterranean). Biol. Conserv. 116, 417–431 (2004).

    Article  Google Scholar 

  • 34.

    Valtonen, M. et al. Causes and consequences of fine-scale population structure in a critically endangered freshwater seal. BMC Ecol. 14, 22 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Karamanlidis, A. A., Dendrinos, P., Tounta, E. & Kotomatas, S. Monitoring human activity in an area dedicated to the protection of the endangered Mediterranean monk seal. Coast. Manag. 32, 293–306 (2004).

    Article  Google Scholar 

  • 36.

    Karamanlidis, A. A. et al. An interview-based approach to assess seal—small-scale fishery interactions informs the conservation strategy of the endangered Mediterranean monk seal. Aquat. Cons. Mar. Freshw. Ecos. 30, 928–936 (2020).

    Article  Google Scholar 

  • 37.

    Karamanlidis, A. A. Establishment of the “Hellenic Monk Seal Register”. Final report of a grant award from the Marine Mammal Commission to MOm/Hellenic Society for the Study and Protection of the Monk seal. 1–25 (2017).

  • 38.

    Stoffel, M. A. et al. Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history. Nat. Commun. 9, 1–12 (2018).

    Article  CAS  Google Scholar 

  • 39.

    Gaubert, P. et al. Insights from 180 years of mitochondrial variability in the endangered Mediterranean monk seal (Monachus monachus). Mar. Mamm. Sci. 35, 1489–1511 (2019).

    Article  Google Scholar 

  • 40.

    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).

    Article  Google Scholar 

  • 41.

    Hoelzel, A. R. et al. Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal. J. Evol. Biol. 15, 567–575 (2002).

    Article  Google Scholar 

  • 42.

    Allen, P. J., Amos, W., Pomeroy, P. P. & Twiss, S. D. Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Mol. Ecol. 4, 653–662 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Goodman, S. J. Molecular population genetics of the European harbour seal (Phoca vitulina) with reference to the 1988 phocine distemper virus epizootic PhD thesis thesis, University of Cambridge, (1995).

  • 44.

    Coltman, D. W., Bowen, W. D. & Wright, J. M. PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol. Ecol. 5, 161–163 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Goodman, S. J. Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite DNA polymorphisms. Mol. Biol. Evol. 15, 104–118 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Pastor, T. et al. Low genetic variability in the highly endangered Mediterranean monk seal. J. Hered. 95, 291–300 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Schultz, J. K., Marshall, A. J. & Pfunder, M. Genome-wide loss of diversity in the critically endangered Hawaiian monk seal. Diversity 2, 863–880 (2010).

    CAS  Article  Google Scholar 

  • 48.

    Mihnovets, A. N. et al. A novel microsatellite multiplex assay for the endangered Hawaiian monk seal (Neomonachus schauinslandi). Con. Gen. Res. 8, 91–95 (2016).

    Article  Google Scholar 

  • 49.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Jombart, T., Devillard, S. & Durfour, A.-B. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92–103 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Upton, G. & Fingleton, B. Spatial Data Analysis by Example. Volume 1: Point Pattern and Quantitative Data (Wiley, New York, 1985).

    Google Scholar 

  • 52.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • 53.

    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS  Article  Google Scholar 

  • 54.

    Forbes, S. H. & Hogg, J. T. Assessing population structure at high levels of differentiation: Microsatellite comparisons of bighorn sheep and large carnivores. Anim. Cons. For. 2, 223–233 (1999).

    Article  Google Scholar 

  • 55.

    Hardy, O. J. & Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).

    Article  CAS  Google Scholar 

  • 56.

    Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubicaceae). Am. J. Bot. 82, 1420–1425 (1995).

    Article  Google Scholar 

  • 57.

    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Engels, W. R. Exact tests for Hardy–Weinberg proportions. Genetics 183, 1431–1441 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    HWxtest: Exact Tests for Hardy–Weinberg proportions. R package version 1.1.7. (2016).

  • 60.

    Karamanlidis, A. A. et al. History-driven population structure and assymetric gene flow in a recovering large carnivore at the rear-edge of its European range. Heredity 120, 168–182 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Res. 11, 141–145 (2011).

    Article  Google Scholar 

  • 62.

    Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).

    Article  Google Scholar 

  • 63.

    Waples, R. S. & Do, C. H. I. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).

    PubMed  Article  Google Scholar 

  • 64.

    Do, C. et al. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Res. 14, 209–214 (2014).

    CAS  Article  Google Scholar 

  • 65.

    Waples, R. S. & Do, C. LdNe: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Res. 8, 753–756 (2008).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species