in

Genetic diversity, population structure and historical demography of the two-spined yellowtail stargazer (Uranoscopus cognatus)

  • 1.

    Cámara, A. & Santero-Sánchez, R. Economic, social, and environmental impact of a sustainable fishereis model in Spain. Sustainability 11, 6311 (2019).

    Article 

    Google Scholar 

  • 2.

    Department of Fisheries Malaysia. Annual Fisheries statistics 2010–2019. https://www.dof.gov.my/index.php/pages/view/82 (2020).

  • 3.

    Department of Fisheries, Thailand. The annual marine fisheries statistics (2010–2019) based on the sample survey. https://elibonline.fisheries.go.th/elib/cgi-bin/opacexe.exe?op=dsp&bid=10498&lang=0&db=Main&pat=&cat=sub&skin=s&lpp=20&catop=edit&scid=zzz (2020).

  • 4.

    Jha, S., Deepti, V., Ravali, V. & Sujatha, K. Studies on some aspects of biology of Uranoscopus cognatus Cantor, 1849 (Pisces: Uranoscopidae) off Visakhapatnam, central eastern coast of India. Indian J. Mar. Sci. 48, 85–92 (2019).

    Google Scholar 

  • 5.

    Clark, M. R. et al. The impacts of deep-sea fisheries on benthic communities: A review. ICES J. Mar. Sci. 73(1), 51–69 (2016).

    Article 

    Google Scholar 

  • 6.

    Van Denderen, P. D. et al. Evaluating impacts of bottom trawling and hypoxia on benthic communities at the local, habitat, and regional scale using a modelling approach. ICES J. Mar. Sci. 77(1), 578–589 (2019).

    Google Scholar 

  • 7.

    Erdoğan Sağlam, N. & Sağlam, C. Population parameters of stargazer (Uranoscopus scaber Linnaeus, 1758) in the southeastern Black Sea region during the 2011–2012 fishing season. J. Appl. Ichthyol. 29, 1313–1317 (2013).

    Article 

    Google Scholar 

  • 8.

    Matsunuma, M. et al. Fishes of Terengganu: East Coast of Malay Peninsula, Malaysia (National Museum of Nature and Science, 2011).

    Google Scholar 

  • 9.

    Vilasri, V. Family Uranoscopidae. In Fishes of Southern Taiwan (eds Koeda, K. & Ho, H. S.) 1097–1105 (National Museum of Marine Biology & Aquarium, 2019).

    Google Scholar 

  • 10.

    Starks, E. C. The Osteology and Relationships of the Uranoscopoid Fishes (Stanford University Press, 1923).

    Google Scholar 

  • 11.

    Pietsch, T. W. Phylogenetic relationships of trachinoid fishes of the family Uranoscopidae. Copeia 1989, 253–303 (1989).

    Article 

    Google Scholar 

  • 12.

    Kishimoto, H. Uranoscopidae. In FAO Species Identification Guide for Fisheries Purposes (eds Carpenter, K. E. & Niem, V. H.) 3519–3531 (FAO, 2001).

    Google Scholar 

  • 13.

    Randall, J. E. & Arnold, R. J. Uranoscopus rosette, a new species of stargazer (Uranoscopidae: Trachinoidei) from the Red Sea. Aqua. Int. J. Ichthyol. 18, 209–219 (2012).

    Google Scholar 

  • 14.

    Jung-chen, H. & Hin-Kiu, M. Stargazers (Uranoscopidae) have exceptionally more bile. Kuroshio Sci. 9–1, 17–26 (2015).

    Google Scholar 

  • 15.

    Vilasri, V. Comparative anatomy and phylogenetic systematics of the family Uranoscopidae (Actinopterygii: Perciformes). Mem. Fac. Fish. Hokkaido Univ. 55, 1–106 (2013).

    Google Scholar 

  • 16.

    Fricke, R., Eschmeyer, W. N. & Van der Laan, R. (eds). Eschmeyer’s catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2020).

  • 17.

    Froese, R. & Pauly, D. Uranoscopidae. Fishbase https://www.fishbase.se/Summary/FamilySummary.php?ID=378 (2019).

  • 18.

    Fricke, R. Two new species of stargazers of the genus Uranoscopus (Teleostei: Uranoscopidae) from the western Pacific Ocean. Zootaxa 4476, 157–167 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Fricke, R., Jawad, L. A., Al-Kharusi, L. H. & Al-Mamry, J. M. New record and redescription of Uranoscopus crassiceps Alcock, 1890 (Uranoscopidae) From Oman, Arabian Sea, Northwestern Indian Ocean, based on adult specimens. Cybium 37, 143–147 (2013).

    Google Scholar 

  • 20.

    Department of Fisheries Malaysia. Valid Local Name of Malaysian Marine Fishes (Department of Fisheries Malaysia, 2009).

    Google Scholar 

  • 21.

    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Article 

    Google Scholar 

  • 22.

    Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 27, 1153–1167 (2000).

    Article 

    Google Scholar 

  • 23.

    Rohfritsch, A. & Borsa, P. Genetic structure of Indian scad mackerel Decapterus russelli: Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas. Heredity 95, 315 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Lohman, D. J. et al. Biogeography of the Indo-Australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).

    Article 

    Google Scholar 

  • 25.

    Crandall, E. D. et al. The molecular biogeography of the Indo-Pacific: Testing hypotheses with multispecies genetic patterns. Glob. Ecol. Biogeogr. 28, 943–960 (2019).

    Article 

    Google Scholar 

  • 26.

    Reece, J. S., Bowen, B. W., Joshi, K., Goz, V. & Larson, A. Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific. J. Hered. 101, 391–402 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Akib, N. A. M. et al. High connectivity in Rastrelliger kanagurta: influence of historical signatures and migratory behaviour inferred from mtDNA cytochrome b. PLoS ONE 10, e0119749 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Jamaludin, N. A. et al. Phylogeography of the Japanese scad, Decapterus maruadsi (Teleostei; Carangidae) across the Central Indo-West Pacific: evidence of strong regional structure and cryptic diversity. Mitochondrial DNA A 2, 1–13 (2020).

    Google Scholar 

  • 29.

    Gaither, M. R., Toonen, R. J., Robertson, D. R., Planes, S. & Bowen, B. W. Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J. Biogeogr. 37, 133–147 (2010).

    Article 

    Google Scholar 

  • 30.

    Gaither, M. R. et al. Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific Barrier with contemporary overlap in the Coral Triangle. BMC Evol. Biol. 11, 189 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Timm, J. & Kochzius, M. Geological history and oceanography of the Indo-Malay Archipelago shape the genetic population structure in the false clown anemonefish (Amphiprion ocellaris). Mol. Ecol. 17, 3999–4014 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Otwoma, L. M. & Kochzius, M. Genetic population structure of the coral reef sea star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific. PLoS ONE 11, 10 (2016).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Williams, S. T., Jara, J., Gomez, E. & Knowlton, N. The marine Indo-West Pacific break: Contrasting the resolving power of mitochondrial and nuclear genes. Integr. Comp. Biol. 42, 941–952 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Supmee, V., Sangthong, P., Songrak, A. & Suppapan, J. Population genetic structure of Asiatic Hard Clam (Meretrix meretrix) in Thailand based on Cytochrome Oxidase subunit I gene sequence. Biodiversitas 21, 2702–2709 (2020).

    Article 

    Google Scholar 

  • 35.

    Hui, M. et al. Comparative genetic population structure of three endangered giant clams (Cardiidae: Tridacna species) throughout the Indo-West Pacific: Implications for divergence, connectivity and conservation. J. Molluscan Stud. 82, 403–414 (2016).

    Article 

    Google Scholar 

  • 36.

    Panithanarak, T., Karuwancharoen, R., Na-Nakorn, U. & Nguyen, T. T. Population genetics of the spotted seahorse (Hippocampus kuda) in Thai waters: Implications for conservation. Zool. Stud. 49, 564–576 (2010).

    CAS 

    Google Scholar 

  • 37.

    Kasim, N. S. et al. Recent population expansion of longtail tuna Thunnus tonggol (Bleeker, 1851) inferred from the mitochondrial DNA markers. PeerJ 8, 9679 (2020).

    Article 

    Google Scholar 

  • 38.

    Canales-Aguirre, C. B., Ferrada-Fuentes, S., Galleguillos, R., Oyarzun, F. X. & Hernández, C. E. Population genetic structure of Patagonian toothfish (Dissostichus eleginoides) in the Southeast Pacific and Southwest Atlantic Ocean. PeerJ 6, e4173 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Sato, M. et al. Genetic structure and demographic connectivity of marbled flounder (Pseudopleuronectes yokohamae) populations of Tokyo Bay. J. Sea Res. 142, 79–90 (2018).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Borsa, P. Genetic structure of round scad mackerel Decapterus macrosoma (Carangidae) in the Indo-Malay archipelago. Mar. Biol. 142, 575–581 (2003).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Eytan, R. I. & Hellberg, M. E. Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes. Evolution 64, 3380–3397 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Tan, M. P., Jamsari, A. F. J. & Siti Azizah, M. N. Genotyping of microsatellite markers to study genetic structure of the wild striped snakehead Channa striata in Malaysia. J. Fish. Biol. 88, 1932–1948 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Tan, M. P., Jamsari, A. F. J. & Siti Azizah, M. N. Phylogeographic pattern of the striped snakehead, Channa striata in Sundaland: Ancient river connectivity, geographical and anthropogenic signatures. PLoS ONE 7, 1–11 (2012).

    Google Scholar 

  • 44.

    Tan, M. P., Jamsari, A. F. J., Muhlisin, Z. A. & Siti Azizah, M. N. Mitochondrial genetic variation and population structure of the striped snakehead, Channa striata in Malaysia and Sumatra. Indonesia. Biochem. Syst. Ecol. 60, 99–105 (2015).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Haponski, A. E. & Stepien, C. A. Phylogenetic and biogeographical relationships of the Sander pikeperches (Percidae: Perciformes): Patterns across North America and Eurasia. Biol. J. Linn. Soc. Lond. 110, 156–179 (2013).

    Article 

    Google Scholar 

  • 46.

    Milá, B., Van Tassell, J. L., Calderón, J. A., Rüber, L. & Zardoya, R. Cryptic lineage divergence in marine environments: Genetic differentiation at multiple spatial and temporal scales in the widespread intertidal goby Gobiosoma bosc. Ecol. Evol. 7, 5514–5523 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Piganeau, G., Gardner, M. & Eyre-Walker, A. A broad survey of recombination in animal mitochondria. Mol. Biol. Evol. 21, 2319–2325 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Avise, J. C. Molecular Markers, Natural History, and Evolution (Sinauer Associates Inc, 2004).

    Google Scholar 

  • 49.

    De Mandal, S., Chhakchhuak, L., Gurusubramanian, G. & Kumar, N. S. Mitochondrial markers for identification and phylogenetic studies in insects–A Review. DNA Barcodes 2, 1–9 (2014).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Hoofer, S. R., Reeder, S. A., Hansen, E. W. & Van Den Bussche, R. A. Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). J. Mammal. 84, 809–821 (2003).

    Article 

    Google Scholar 

  • 52.

    Hewitt, G. M. Speciation, hybrid zones and phylogeography or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Surya, S. et al. Morphometry and length-weight relationship of Uranoscopus marmoratus Cuvier, 1829 (Family: Uranoscopidae) from Palk Bay, India. Int. J. Biol. Sci. 5, 1–10 (2016).

    ADS 

    Google Scholar 

  • 54.

    Narejo, N. T. Morphometric characters and their relationships in Gudusia chapra (Hamilton) from Keenjhar Lake (Distt: Thatta), Sindh, Pakistan. Pak. J. Zool. 42, 101–104 (2010).

    Google Scholar 

  • 55.

    Gan, H. M., Nur Ilham Syahadah, M. Y., Vilasri, V., Tun Nurul Aimi, M. J. & Tan, M. P. Four whole mitogenome sequences of yellowtail stargazers (Uranoscopus cognatus cantor 1849) from East Peninsular Malaysia and West Coast of Thailand. Mitochondrial DNA B 4, 256–258 (2019).

    Article 

    Google Scholar 

  • 56.

    Panjarat, S. Sustainable fisheries in the Andaman Sea coast of Thailand. Division for Ocean Affairs and the Law of the Sea Office of Legal Affairs. (The United Nations, 2008).

  • 57.

    Derrick, B., Noranarttragoon, P., Zeller, D., Teh, L. C. & Pauly, D. Thailand’s missing marine fisheries catch (1950–2014). Front. Mar. Sci. 4, 402 (2017).

    Article 

    Google Scholar 

  • 58.

    Sampantamit, T., Ho, L., Van Echelpoel, W., Lachat, C. & Goethals, P. Links and trade-offs between fisheries and environmental protection in relation to the sustainable development goals in Thailand. Water 12, 399 (2020).

    Article 

    Google Scholar 

  • 59.

    Chong, V., Lee, P. & Lau, C. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Lim, H. C., Ahmad, A. T., Nuruddin, A. A. & Mohd Nor, S. A. Cytochrome b gene reveals panmixia among Japanese Threadfin Bream, Nemipterus japonicus (Bloch, 1791) populations along the coasts of Peninsular Malaysia and provides evidence of a cryptic species. Mitochondrial DNA A 27, 575–584 (2016).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Nabilsyafiq, M. H. et al. ND5 gene marker reveals recent population expansion of wild pearse’s mudskipper (Periophthalmus novemradiatus Hamilton) inhabits Setiu wetlands in east Peninsular Malaysia. Malays. Appl. Biol. 48, 87–93 (2019).

    Google Scholar 

  • 62.

    Zhou, Y. et al. Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity 118, 211–220 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Lessios, H. A. The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Annu. Rev. Ecol. Evol. Syst. 39, 63–91 (2008).

    Article 

    Google Scholar 

  • 64.

    Avise, J. Molecular Markers, Natural History and Evolution (Chapman and Hall, 1994).

    Book 

    Google Scholar 

  • 65.

    Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World (John Wiley and Sons, 2016).

    Book 

    Google Scholar 

  • 66.

    Young, J. Z. Memoirs: On the autonomic nervous system of the Teleostean Fish Uranoscopus scaber. J. Cell Sci. 2, 491–536 (1931).

    Article 

    Google Scholar 

  • 67.

    Day, J., Clark, J. A., Williamson, J. E., Brown, C. & Gillings, M. Population genetic analyses reveal female reproductive philopatry in the oviparous Port Jackson shark. Mar. Freshw. Res. 70, 986–994 (2019).

    Article 

    Google Scholar 

  • 68.

    Roycroft, E. J., Le Port, A. & Lavery, S. D. Population structure and male-biased dispersal in the short-tail stingray Bathytoshia brevicaudata (Myliobatoidei: Dasyatidae). Conserv. Genet. 20, 717–728 (2019).

    CAS 
    Article 

    Google Scholar 

  • 69.

    King, T. L., Eackles, M. S., Spidle, A. P. & Brockmann, H. J. Regional differentiation and sex-biased dispersal among populations of the horseshoe crab Limulus polyphemus. Trans. Am. Fish. Soc. 134, 441–465 (2005).

    Article 

    Google Scholar 

  • 70.

    Lane, A. & Shine, R. Intraspecific variation in the direction and degree of sex-biased dispersal among sea-snake populations. Mol. Ecol. 20, 1870–1876 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 71.

    Casale, P., Laurent, L., Gerosa, G. & Argano, R. Molecular evidence of male-biased dispersal in loggerhead turtle juveniles. J. Exp. Mar. Biol. Ecol. 267, 139–145 (2002).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Wyrtki, K. Physical Oceanography of the Southeast Asian Waters (University of California, 1961).

    Google Scholar 

  • 73.

    Barber, P., Palumbi, S., Erdmann, M. & Moosa, M. Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Mol. Ecol. 11, 659–674 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Kamarudin, K. R. & Esa, Y. Phylogeny and phylogeography of Barbonymus schwanenfeldii (Cyprinidae) from Malaysia inferred using partial cytochrome b mtDNA gene. J. Trop. Biol. Conserv. 5, 1–13 (2009).

    Google Scholar 

  • 75.

    Tan, M. P. et al. Genetic diversity of the Pearse’s Mudskipper Periophthalmus novemradiatus (Perciformes: Gobiidae) and characterization of its complete mitochondrial genome. Thalassas 36, 103–113 (2020).

    Article 

    Google Scholar 

  • 76.

    Roberts, T. R. & Khaironizam, M. Z. Trophic polymorphism in the Malaysian fish Neolissochilus soroides and other old world barbs (Teleostei, Cyprinidae). Nat. Hist. Bull. Siam Soc. 56, 25–53 (2008).

    Google Scholar 

  • 77.

    Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115, 276 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Vasileva, E. Morphokaryological variability and divergence of stargazers (Uranoscopus, perciformes) from the Mediterranean Sea basin: I. Divergence and taxonomic state of the Black Sea Stargazer. J. Ichthyol. 52, 476–484 (2012).

    Article 

    Google Scholar 

  • 79.

    Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Ress 25, 4692–4693 (1997).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond., B Biol. Sci. 360, 1847–1857 (2005).

    CAS 
    Article 

    Google Scholar 

  • 81.

    López, J. A., Chen, W. J. & Ortí, G. Esociform phylogeny. Copeia 2004, 449–464 (2004).

    Article 

    Google Scholar 

  • 82.

    Mat Jaafar, T. N., Taylor, M. I., Mohd Nor, S. A., Bruyn, M. D. & Carvalho, G. R. Comparative genetic stock structure in three species of commercially exploited Indo-Malay Carangidae (Teleosteii, Perciformes). J. Fish Biol. 96, 337–349 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Farris, J. S., Källersjö, M., Kluge, A. G. & Bult, C. Testing significance of incongruence. Cladistics 10, 315–319 (1994).

    Article 

    Google Scholar 

  • 85.

    Swofford, D. L. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0 Beta 10 (Sinauer Associates, 2002).

    Google Scholar 

  • 86.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 88.

    Hasegawa, M., Kishino, H. & Yano, T. A. Dating of the huma-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 89.

    Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucletide sequences. J. Mol. Evol. 16, 111–120 (1980).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 90.

    Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).

    PubMed 
    Article 

    Google Scholar 

  • 91.

    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 92.

    Dupanloup, I., Schneider, S. & Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571–2581 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 93.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 94.

    Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70, 3321–3323 (1973).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 

  • 95.

    Lynch, M. & Crease, T. The analysis of population survey data on DNA sequence variation. Mol. Biol. Evol. 7, 377–394 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 96.

    Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583–589 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Harpending, H. Infertility and forager demography. Am. J. Phys. Anthropol. 93, 385–390 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 100.

    Slatkin, M. & Hudson, R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 102.

    Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 103.

    Yildirim, Y. Genetic structure of Pleurobranchaea maculata in New Zealand (Massey University, 2016).

    Google Scholar 

  • 104.

    Hubbs, C. & Lagler, K. The fishes of the Great Lakes region 213 (The University of Michigan Press, 1958).

    Google Scholar 

  • 105.

    Kishimoto, H. A new stargazer, Uranoscopus flavipinnis, from Japan and Taiwan with redescription and neotype designation of U. japonicus. Japan. J. Ichthyol. 34, 1–14 (1987).

    Google Scholar 

  • 106.

    Kishimoto, H. Redescription and lectotype designation of the stargazer Uranoscopus kaianus Günther. Copeia 1984, 1009–1011 (1984).

    Article 

    Google Scholar 

  • 107.

    Gomon, M. F. & Johnson, J. A new fringed stargazer (Uranoscopidae: Ichthyscopus) with descriptions of the other Australian species of the genus. Mem. Queensl. Mus. 43, 597–619 (1999).

    Google Scholar 

  • 108.

    Rainboth, W. J. Fishes of the Cambodian Mekong (Food and Agriculture Org, 1996).

    Google Scholar 

  • 109.

    Imamura, H. & Matsuura, K. Redefinition and phylogenetic relationships of the family Pinguipedidae (Teleostei: Perciformes). Ichthyol. Res. 50, 259–269 (2003).

    Article 

    Google Scholar 

  • 110.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • 111.

    Seah, Y. G., Nabilsyafiq, M. & Mazlan, A. G. Preliminary study on the morphology and biology of coexist Nemipterus furcosus and Nemipterus tambuloides from Terengganu Waters Peninsular Malaysia. J. Fish. Aquat. Sci. 11, 418–424 (2016).

    Article 

    Google Scholar 

  • 112.

    Johnson, R. A. & Wichern, D. W. Multivariate statistical analysis (Prentice Hall Upper Saddle River, 1998).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    From NYC zookeeper to aspiring architect

    3Q: Why “nuclear batteries” offer a new approach to carbon-free energy