in

Genetic patterns in Mugil cephalus and implications for fisheries and aquaculture management

  • 1.

    Garibaldi, L. The FAO global capture production database: A six-decade effort to catch the trend. Mar. Pol. 36, 760–768 (2012).

    Article  Google Scholar 

  • 2.

    FAO (Food and Agriculture Organization). The State of World Fisheries and Aquaculture 2018. in Meeting The Sustainable Development Goals. (FAO, Rome, 2018).

  • 3.

    Grant, W. S., Jasper, J., Bekkevold, D. & Adkison, M. Responsible genetic approach to stock restoration, sea ranching and stock enhancement of marine fishes and invertebrates. Rev. Fish Biol. Fish. 27, 615–649 (2017).

    Article  Google Scholar 

  • 4.

    Christie, M. R., Marine, M. L., French, R. A., Waples, R. S. & Blouin, M. S. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109, 254–260 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Ryman, N. & Laikre, L. Effects of supportive breeding on the genetically effective population size. Conserv. Biol. 5, 325–329 (1991).

    Article  Google Scholar 

  • 6.

    Waples, R. S., Hindar, K., Karlsson, S. & Hard, J. J. Evaluating the Ryman–Laikre effect for marine stock enhancement and aquaculture. Curr. Zool. 62, 617–627 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Sun, X. & Hedgecock, D. Temporal genetic change in North American Pacific oyster populations suggests caution in seascape genetics analyses of high gene-flow species. Mar. Ecol. Prog. Ser. 565, 79–93 (2017).

    ADS  Article  Google Scholar 

  • 8.

    Bacheler, N. M., Wong, R. A. & Buckel, J. A. Movements and mortality rates of striped mullet in North Carolina. N. Am. J. Fish. Manage. 25, 361–373 (2005).

    Article  Google Scholar 

  • 9.

    Whitfield, A. K., Panfili, J. & Durand, J.-D. A global review of the cosmopolitan flathead mullet Mugil cephalus Linnaeus 1758 (Teleostei: Mugilidae), with emphasis on the biology, genetics, ecology and fisheries aspects of this apparent species complex. Rev. Fish Biol. Fish. 22, 641–681 (2012).

    Article  Google Scholar 

  • 10.

    Hsu, C.-C., Chang, C.-W., Iizuka, Y. & Tzeng, W.-N. A growth check deposited at estuarine arrival in otoliths of juvenile flathead mullet (Mugil cephalus L.). Zool. Stud. 48(3), 315–323 (2009).

    Google Scholar 

  • 11.

    Antuofermo, E. et al. First evidence of intersex condition in extensively reared mullets from Sardinian lagoons (central-western Mediterranean, Italy). Ital. J. Anim. Sci. 16, 283–291 (2017).

    Article  Google Scholar 

  • 12.

    Heras, S., Roldán, M. I. & Castro, M. G. Molecular phylogeny of Mugilidae fishes revised. Rev. Fish Biol. Fish. 19, 217–231 (2009).

    Article  Google Scholar 

  • 13.

    Heras, S., Maltagliati, F., Fernández, M. V. & Roldán, M. I. Shaken not stirred: A molecular contribution to the systematics of genus Mugil (Teleostei, Mugilidae). Integr. Zool. 11, 263–281 (2016).

    PubMed  Article  Google Scholar 

  • 14.

    Shen, K.-N., Jamandre, B. W., Hsu, C.-C., Tzeng, W.-N. & Durand, J.-D. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evol. Biol. 11, 83. https://doi.org/10.1186/1471-2148-11-83 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Durand, J.-D. et al. Systematics of the grey mullets (Teleostei: Mugiliformes: Mugilidae): Molecular phylogenetic evidence challenges two centuries of morphology-based taxonomy. Mol. Phylogenet. Evol. 64, 73–92 (2012).

    PubMed  Article  Google Scholar 

  • 16.

    Rossi, A. R., Capula, M., Crosetti, D., Campton, D. E. & Sola, L. Genetic divergence and phylogenetic inferences in five species of Mugilidae (Pisces: Perciformes). Mar. Biol. 131, 213–218 (1998).

    CAS  Article  Google Scholar 

  • 17.

    Blel, H. et al. Selection footprint at the first intron of the Prl gene in natural populations of the flathead mullet (Mugil cephalus, L. 1758). J. Exp. Mar. Biol. Ecol. 387, 60–67 (2010).

    CAS  Article  Google Scholar 

  • 18.

    Durand, J., Blel, H., Shen, K., Koutrakis, E. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: A single mitochondrial clade and many nuclear barriers. Mar. Ecol.-Prog. Ser. 474, 243–261 (2013).

    ADS  Article  Google Scholar 

  • 19.

    Šegvić-Bubić, T. et al. Range expansion of the non-native oyster Crassostrea gigas in the Adriatic Sea. Acta Adriat. 57(2), 321–330 (2016).

    Google Scholar 

  • 20.

    Piras, P. et al. A case study on the labeling of bottarga produced in Sardinia from ovaries of grey mullets (Mugil cephalus and Mugil capurrii) caught in Eastern Central Atlantic coasts. Ital. J. Food. Saf. 7(1), 6893. https://doi.org/10.4081/ijfs.2018.6893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Miggiano, E. et al. Isolation and characterization of microsatellite loci in the striped mullet, Mugil cephalus. Mol. Ecol. Notes 5, 323–326 (2005).

    CAS  Article  Google Scholar 

  • 22.

    Jinliang, W. A parsimony estimator of the number of populations from a STRUCTURE‐like analysis. Mol. Ecol. Resour. 19, 970–981 (2019).

    Article  CAS  Google Scholar 

  • 23.

    FAO (Food and Agriculture Organization). Code of Conduct for Responsible Fisheries (FAO, Rome, 1995).

    Google Scholar 

  • 24.

    Mai, A. C. G. et al. Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil. Estuar. Coast. Shelf Sci. 149, 80–86 (2014).

    ADS  Article  Google Scholar 

  • 25.

    Pacheco-Almanzar, E., Simons, J., Espinosa-Perez, H., Chiappa-Carrara, X. & Ibanez, A. L. Can the name Mugil cephalus (Pisces: Mugilidae) be used for the species occurring in the north western Atlantic?. Zootaxa 4109, 381–390 (2016).

    PubMed  Article  Google Scholar 

  • 26.

    Waples, R. S. & Gaggiotti, O. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15, 1419–1439 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).

    Article  Google Scholar 

  • 28.

    Waples, R. S. & England, P. R. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189, 633–644 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Murenu, M., Olita, A., Sabatini, A., Follesa, M. C. & Cau, A. Dystrophy effects on the Liza ramada (Risso, 1826) (Pisces, Mugilidae) population in the Cabras lagoon (Central-Western Sardinia). Chem. Ecol. 20, 425–433 (2004).

    Article  Google Scholar 

  • 30.

    Ryman, N., Laikre, L. & Hössjer, O. Do estimates of contemporary effective population size tell us what we want to know?. Mol. Ecol. 28, 1904–1918 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Guinand, B. et al. Candidate gene variation in gilthead sea bream reveals complex spatiotemporal selection patterns between marine and lagoon habitats. Mar. Ecol. Prog. Ser. 558, 115–127 (2016).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Chaoui, L. et al. Microsatellite length variation in candidate genes correlates with habitat in the gilthead sea bream Sparus aurata. Mol. Ecol. 21, 5497–5511 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    González-Wangüemert, M. & Pérez-Ruzafa, Á. In two waters: contemporary evolution of lagoonal and marine white seabream (Diplodus sargus) populations. Mar. Ecol. 33, 337–349 (2012).

    ADS  Article  Google Scholar 

  • 34.

    Cardona, L. Effects of salinity on the habitat selection and growth performance of Mediterranean flathead grey mullet Mugil cephalus (Osteichthyes, Mugilidae). Estuar. Coast. Shelf Sci. 50, 727–737 (2000).

    ADS  Article  Google Scholar 

  • 35.

    Fortunato, R. C., Galán, A. R., Alonso, I. G., Volpedo, A. & Durà, V. B. Environmental migratory patterns and stock identification of Mugil cephalus in the Spanish Mediterranean Sea, by means of otolith microchemistry. Estuar. Coast. Shelf. Sci. 188, 174–180 (2017).

    ADS  Article  CAS  Google Scholar 

  • 36.

    Jones, A. G., Small, C. M., Paczolt, K. A. & Ratterman, N. L. A practical guide to methods of parentage analysis. Mol. Ecol. Resour. 10, 6–30 (2010).

    PubMed  Article  Google Scholar 

  • 37.

    Taylor, H. R. The use and abuse of genetic marker-based estimates of relatedness and inbreeding. Ecol. Evol. 5, 3140–3150 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Coppinger, C. R. et al. Assessing the genetic diversity of catface grouper Epinephelus andersoni in the subtropical Western Indian Ocean. Fish. Res. 218, 186–197 (2019).

    Article  Google Scholar 

  • 39.

    Cushman, E. L. et al. Development of a standardized molecular tool and estimation of genetic measures for responsible aquaculture-based fisheries enhancement of American Shad in North and South Carolina. Trans. Am. Fish. Soc. 148, 148–162 (2019).

    Article  Google Scholar 

  • 40.

    Waples, R. S., Punt, A. E. & Cope, J. M. Integrating genetic data into management of marine resources: How can we do it better?. Fish. Fish. 9, 423–449 (2008).

    Article  Google Scholar 

  • 41.

    Iacchei, M. et al. Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations. Mol. Ecol. 22, 3476–3494 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Bernardi, G., Beldade, R., Holbrook, S. J. & Schmitt, R. J. Full-sibs in cohorts of newly settled coral reef fishes. PLoS ONE 7(e44953), 2012. https://doi.org/10.1371/journal.pone.0044953 (2012).

    CAS  Article  Google Scholar 

  • 43.

    Como, S., van der Velde, G. & Magni, P. Temporal variation in the trophic levels of secondary consumers in a Mediterranean coastal lagoon (Cabras lagoon, Italy). Estuaries Coasts 41, 218–232 (2018).

    CAS  Article  Google Scholar 

  • 44.

    Floris, R., Manca, S. & Fois, N. Microbial ecology of intestinal tract of gilthead sea bream (Sparus aurata Linnaeus, 1758) from two coastal lagoons of Sardinia (Italy). Transit. Waters Bullet. 7(2), 4–12. https://doi.org/10.1285/i1825229Xv7n2p4 (2013).

    Article  Google Scholar 

  • 45.

    Merella, P. & Garippa, G. Metazoan parasites of grey mullets (Teleostea: Mugilidae) from the Mistras lagoon (Sardinia-Western Mediterranean). Sci. Mar. 65, 201–206 (2001).

    Article  Google Scholar 

  • 46.

    Pitacco, V. et al. Spatial patterns of macrobenthic alpha and beta diversity at different scales in Italian transitional waters (Central Mediterranean). Estuar. Coast. Shelf Sci. 222, 126–138 (2019).

    ADS  Article  Google Scholar 

  • 47.

    Cioffi, F. & Gallerano, F. From rooted to floating vegetal species in lagoons as a consequence of the increases of external nutrient load: An analysis by model of the species selection mechanism. Appl. Math. Model. 30, 10–37 (2006).

    MATH  Article  Google Scholar 

  • 48.

    Wasko, A. P., Martins, C., Oliveira, C. & Foresti, F. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas 138, 161–165 (2003).

    PubMed  Article  Google Scholar 

  • 49.

    Waples, R. S. Testing for Hardy–Weinberg proportions: Have we lost the plot?. J. Hered. 106, 1–19 (2015).

    PubMed  Article  Google Scholar 

  • 50.

    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed  Article  Google Scholar 

  • 51.

    Kinnison, M. T., Bentzen, P., Unwin, M. J. & Quinn, T. P. Reconstructing recent divergence: Evaluating nonequilibrium population structure in New Zealand chinook salmon. Mol. Ecol. 11, 739–754 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  • 54.

    Cossu, P. et al. Influence of genetic drift on patterns of genetic variation: The footprint of aquaculture practices in Sparus aurata (Teleostei: Sparidae). Mol. Ecol. 28, 3012–3024 (2019).

    PubMed  Article  Google Scholar 

  • 55.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article  CAS  Google Scholar 

  • 56.

    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Dąbrowski, M. J. et al. Reliability assessment of null allele detection: Inconsistencies between and within different methods. Mol. Ecol. Resour. 14, 361–373 (2014).

    PubMed  Article  CAS  Google Scholar 

  • 58.

    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant Markers: A Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Kauer, M. O., Dieringer, D. & Schlötterer, C. A microsatellite variability screen for positive selection associated with the “Out of Africa” habitat expansion of drosophila melanogaster. Genetics 165, 1137–1148 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed  Article  Google Scholar 

  • 61.

    Paris, M. et al. Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Mol. Ecol. 19, 325–337 (2010).

    PubMed  Article  Google Scholar 

  • 62.

    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).

    Article  Google Scholar 

  • 63.

    Piry, S., Luikart, G. & Cornuet, J.-M. Computer note. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502–503 (1999).

    Article  Google Scholar 

  • 64.

    Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).

    PubMed  Article  Google Scholar 

  • 66.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  • 67.

    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).

    PubMed  Article  Google Scholar 

  • 68.

    Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).

    Article  Google Scholar 

  • 69.

    Blouin, M. S., Parsons, M., Lacaille, V. & Lotz, S. Use of microsatellite loci to classify individuals by relatedness. Mol. Ecol. 5, 393–401 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Kraemer, P. & Gerlach, G. Demerelate: Calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers using R. Mol. Ecol. Resour. 17, 1371–1377 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ml-relate: A computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 6, 576–579 (2006).

    CAS  Article  Google Scholar 

  • 72.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94. https://doi.org/10.1186/1471-2156-11-94 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    Scientists as engaged citizens