in

Geological and Pleistocene glaciations explain the demography and disjunct distribution of red panda (A. fulgens) in eastern Himalayas

  • 1.

    Dong, F. et al. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna. BMC Evol. Biol. 17, 244 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philo. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 183–195 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Zheng, B., Xu, Q. & Shen, Y. The relationship between climate change and quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quat. Int. 97, 93–101 (2002).

    Article  Google Scholar 

  • 4.

    Wei, Z., Zhijiu, C. & Yonghua, L. Review of the timing and extent of glaciers during the last glacial cycle in the bordering mountains of Tibet and in East Asia. Quat. Int. 154, 32–43 (2006).

    Article  Google Scholar 

  • 5.

    Zhou, S., Wang, X., Wang, J. & Xu, L. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau. Quat. Int. 154, 44–51 (2006).

    Article  Google Scholar 

  • 6.

    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44 (2019).

    ADS  Article  Google Scholar 

  • 7.

    Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, Cambridge, 2000).

    Google Scholar 

  • 8.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Wiens, J. J. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).

    PubMed  Article  Google Scholar 

  • 10.

    Srinivasan, U., Tamma, K. & Ramakrishnan, U. Past climate and species ecology drive nested species richness patterns along an east-west axis in the Himalaya. Glob. Ecol. Biogeogr. 23, 52–60 (2014).

    Article  Google Scholar 

  • 11.

    Carstens, B. C. & Knowles, L. L. Shifting distributions and speciation: species divergence during rapid climate change. Mol. Ecol. 16, 619–627 (2007).

    PubMed  Article  Google Scholar 

  • 12.

    Yang, S., Dong, H. & Lei, F. Phylogeography of regional fauna on the Tibetan Plateau: a review. Prog. Nat. Sci. 19, 789–799 (2009).

    CAS  Article  Google Scholar 

  • 13.

    Qu, Y., Lei, F., Zhang, R. & Lu, X. Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau. Mol. Ecol. 19, 338–351 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Zhao, N. et al. Pleistocene climate changes shaped the divergence and demography of Asian populations of the great tit Parus major: evidence from phylogeographic analysis and ecological niche models. J. Avian Biol. 43, 297–310 (2012).

    Article  Google Scholar 

  • 15.

    Lei, F., Qu, Y. & Song, G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr. Zool. 60, 149–161 (2014).

    Article  Google Scholar 

  • 16.

    McKinney, M. L. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. System. 28, 495–516 (1997).

    Article  Google Scholar 

  • 17.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 18.

    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Glatston, A., Wei, F., Zaw, T. & Sherpa, A. Ailurus fulgens. The IUCN Red. List of Threatened Species. (2015).

  • 20.

    Choudhury, A. An overview of the status and conservation of the red panda Ailurus fulgens in India, with reference to its global status. Oryx 35, 250–259 (2001).

    Article  Google Scholar 

  • 21.

    Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Wei, F., Feng, Z., Wang, Z., Zhou, A. & Hu, J. Use of the nutrients in bamboo by the red panda (Ailurus fulgens). J. Zool. 248, 535–541 (1999).

    Article  Google Scholar 

  • 23.

    Roberts, M. S. & Gittleman, J. L. Ailurus fulgens repository.si.edu. Mamm. Species Acc. 222, 1–8 (1984).

    Google Scholar 

  • 24.

    Su, B., Fu, Y., Wang, Y., Jin, L. & Chakraborty, R. Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations. Mol. Biol. Evol. 18, 1070–1076 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Li, M. et al. Mitochondrial phylogeography and subspecific variation in the red panda (Ailurus fulgens): implications for conservation. Mol. Phylogenet. Evol. 36, 78–89 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Hu, Y. et al. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Mol. Ecol. 20, 2662–2675 (2011).

    PubMed  Article  Google Scholar 

  • 27.

    Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, eaax5751 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Dalui, S. et al. Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (Ailurus fulgens) in Kangchenjunga landscape, India. Sci. Rep. 10, 1–12 (2020).

    Article  Google Scholar 

  • 29.

    Liu, Z. F. et al. Variations ofδ18O in precipitation of the Yarlung Zangbo River Basin. Acta Geograph. Sin. (Chin.) 17, 317–326 (2007).

    Google Scholar 

  • 30.

    Wang, X. D. et al. Regional assessment of environmental vulnerability in the Tibetan Plateau: development and application of a new method. J. Arid Environ. 721, 929–939 (2008).

    Google Scholar 

  • 31.

    Zeng, C. et al. Improving sediment load estimations: The case of the Yarlung Zangbo River (the upper Brahmaputra, Tibet Plateau). CATENA 160, 210–211 (2018).

    Article  Google Scholar 

  • 32.

    Du, Z. et al. Mountain Geoecology and Sustainable Development of the Tibetan Plateau 312 (Kluwer, Riverwoods, 2000).

    Google Scholar 

  • 33.

    Choudhury, A. Primates in northeast India: an overview of their distribution and conservation status. ENVIS Bull. Wildl. Prot. Areas 1, 92–101 (2001).

    Google Scholar 

  • 34.

    Meijaard, E. & Groves, C. P. The geography of mammals and rivers in mainland Southeast Asia. In Primate Biogeography (eds Lehman, S. M. & Fleagle, J. G.) 305–329 (Springer, Boston, 2006).

    Google Scholar 

  • 35.

    Fordham, G., Shanee, S. & Peck, M. Effect of river size on Amazonian primate community structure: a biogeographic analysis using updated taxonomic assessments. Am. J. Primatol. 82, e23136 (2020).

    PubMed  Article  Google Scholar 

  • 36.

    Bazin, E. et al. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Heller, R., Chikhi, L. & Siegismund, H. R. The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS ONE 8(5), e62992 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Hu, Y., Qi, D., Wang, H. & Wei, F. Genetic evidence of recent population contraction in the southernmost population of giant pandas. Genetica 138, 1297–1306 (2010).

    PubMed  Article  Google Scholar 

  • 39.

    Chung, S.-L. et al. Diachronous uplift of the Tibetan plateau starting 40? Myr ago. Nature 394, 769–773 (1998).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Tapponnier, P. et al. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671–1677 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 41.

    Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 42.

    Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizler, M. & Ding, L. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 119, 917–933 (2007).

    ADS  Article  Google Scholar 

  • 43.

    Schmidt, F., Franke, F. A., Shirley, M. H., Vliet, K. A. & Villanova, V. L. The importance of genetic research in zoo breeding programmes for threatened species: the African dwarf crocodiles (genus Osteolaemus) as a case study. Int. Zoo Yearb. 49, 125–136 (2015).

    Article  Google Scholar 

  • 44.

    Gippoliti, S., Cotterill, F. P., Zinner, D. & Groves, C. P. Impacts of taxonomic inertia for the conservation of African ungulate diversity: an overview. Biol. Rev. 93, 115–130 (2018).

    PubMed  Article  Google Scholar 

  • 45.

    McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).

    Article  Google Scholar 

  • 46.

    Grace, M. et al. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. Lond. B 374, 20190297 (2019).

    Article  Google Scholar 

  • 47.

    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    CAS  Article  Google Scholar 

  • 48.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Nylander, J. A. A. MrModeltest ver. 2. 2004: Evolutionary Biology Centre (Uppsala University, Sweden, 2004).

    Google Scholar 

  • 50.

    Sato, J. J. et al. Deciphering and dating the red panda’s ancestry and early adaptive radiation of Musteloidea. Mol. Phylogenet. Evol. 53, 907–922 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Rambaut, A. & Drummond, A. J. Tracer version 1.5 [computer program]. (2009).

  • 52.

    Rambaut, A. FigTree version 1.4. 0. Available at http://tree.bio.ed.ac.uk/software/figtree. Accessed October (2016).

  • 53.

    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Corander, J. & Marttinen, P. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol. 15, 2833–2843 (2006).

    PubMed  Article  Google Scholar 

  • 55.

    Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9, 539 (2008).

    Article  Google Scholar 

  • 56.

    Dupanloup, I., Schneider, S. & Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571–2581 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).

    CAS  PubMed  Google Scholar 

  • 58.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy