in

Habitat loss and range shifts contribute to ecological generalization among reef fishes

  • 1.

    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).

    Article  Google Scholar 

  • 4.

    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).

    Article  Google Scholar 

  • 5.

    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).

    Article  Google Scholar 

  • 6.

    Wilson, S. K. et al. Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J. Anim. Ecol. 77, 220–228 (2008).

    Article  Google Scholar 

  • 7.

    Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Change Biol. 10, 1642–1647 (2004).

    Article  Google Scholar 

  • 8.

    Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl Acad. Sci. USA 101, 8251–8253 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Paddack, M. J. et al. Recent region-wide declines in Caribbean reef fish abundance. Curr. Biol. 19, 590–595 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).

    Article  Google Scholar 

  • 13.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl Acad. Sci. USA 106, 22341–22345 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    PubMed  Article  Google Scholar 

  • 16.

    Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Change 4, 127–131 (2014).

    Article  Google Scholar 

  • 17.

    Monaco, C. J. et al. Dietary generalism accelerates arrival and persistence of coral-reef fishes in their novel ranges under climate change. Glob. Change Biol. 26, 5564–5573 (2020).

    Article  Google Scholar 

  • 18.

    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39, 146–159 (2015).

    Article  Google Scholar 

  • 19.

    Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).

    Article  Google Scholar 

  • 20.

    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Pratchett, M. S. et al. in Oceanography and Marine Biology: Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (Taylor and Francis, 2008).

  • 22.

    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Feary, D. A. The influence of resource specialization on the response of reef fish to coral disturbance. Mar. Biol. 153, 153–161 (2007).

    Article  Google Scholar 

  • 24.

    Mellin, C., Bradshaw, C., Fordham, D. & Caley, M. Strong but opposing β-diversity–stability relationships in coral reef fish communities. Proc. R. Soc. B 281, 20131993 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 29.

    Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).

    Article  Google Scholar 

  • 30.

    Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish Fish. 15, 593–615 (2014).

    Article  Google Scholar 

  • 31.

    Guisan, A. et al. Scaling the linkage between environmental niches and functional traits for improved spatial predictions of biological communities. Glob. Ecol. Biogeogr. 28, 1384–1392 (2019).

    Article  Google Scholar 

  • 32.

    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).

    Article  Google Scholar 

  • 33.

    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).

    Article  Google Scholar 

  • 34.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    CAS  Article  Google Scholar 

  • 35.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).

    Article  Google Scholar 

  • 37.

    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Graham, M. H., Kinlan, B. P. & Grosberg, R. K. Post-glacial redistribution and shifts in productivity of giant kelp forests. Proc. R. Soc. B 277, 399–406 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS  Article  Google Scholar 

  • 40.

    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).

    PubMed  Article  Google Scholar 

  • 44.

    Cresswell, A. K. et al. Translating local benthic community structure to national biogenic reef habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125 (2017).

    Article  Google Scholar 

  • 45.

    Edgar, G. J., Barrett, N. S. & Stuart-Smith, R. D. Exploited reefs protected from fishing transform over decades into conservation features otherwise absent from seascapes. Ecol. Appl. 19, 1967–1974 (2009).

    PubMed  Article  Google Scholar 

  • 46.

    Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).

    PubMed  Article  Google Scholar 

  • 48.

    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).

    Article  Google Scholar 

  • 50.

    Becker, R. A., Wilks, A. R (original S code) & Brownrigg, R. (R version). mapdata: Extra map databases. R package version 2.3.0 (2018).

  • 51.

    Matis, P. A., Donelson, J. M., Bush, S., Fox, R. J. & Booth, D. J. Temperature influences habitat preference of coral reef fishes: will generalists become more specialised in a warming ocean? Glob. Change Biol. 24, 3158–3169 (2018).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Startup empowers women to improve access to safe drinking water

    Multifaceted characteristics of dryland aridity changes in a warming world