Pittelkow, C. M. et al. When does no-till yield more? A global meta-analysis. Field Crops Res. 183, 156–168 (2015).
Food and Agriculture Organization of the United Nations (FAO). Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production (2013). http://www.fao.org/3/a-i2215e.pdf.
Michler, J. D., Baylis, K., Arends-Kuenning, M. & Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econom. Manage. 93, 148–169 (2019).
Page, K. L., Dang, Y. P. & Dalal, R. C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2020.00031 (2020).
Farooq, M. & Siddique, K. H. M. Conservation Agriculture (Springer, Berlin, 2015).
Holland, J. M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 103, 1–25 (2004).
Govaerts, B. et al. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Res. 94, 209–219 (2007).
Zhang, W., Zheng, C., Song, Z., Deng, A. & He, Z. Farming systems in China: Innovations for sustainable crop production. In Crop Physiology (eds Zhang, W. et al.) 43–64 (Elsevier, Amsterdam, 2015).
Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
Scopel, E. et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 33, 113–130 (2013).
Steward, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. Agric. Ecosyst. Environ. 251, 194–202 (2018).
Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 1–9 (2018).
Laborde, J. P., Wortmann, C. S., Blanco-Canqui, H., Baigorria, G. A. & Lindquist, J. L. Identifying the drivers and predicting the outcome of conservation agriculture globally. Agric. Syst. 177, 102692. https://doi.org/10.1016/j.agsy.2019.102692 (2020).
Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage practice. Figshare. https://doi.org/10.6084/m9.figshare.12155553 (2020).
Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Sci. Data 8, 33. https://doi.org/10.1038/s41597-021-00817-x (2021).
Food and Agriculture Organization of the United Nations (FAO). Conservation Agriculture (2020). http://www.fao.org/conservation-agriculture/en/.
Ho, T. K. Random decision forests. In Proc. 3rd International Conference on Document Analysis and Recognition, 278–282 (1995).
Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006).
University of Wisconsin-Madison. Crop Calendar Dataset: netCDF 5 Degree (2020). https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/netCDF0-5degree.php.
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).
University of Tokyo. Soil Texture Map (2020). http://hydro.iis.u-tokyo.ac.jp/~sujan/research/gswp3/soil-texture-map.html.
NOAA/OAR/ESRL PSL. University of Delaware Air Temperature & Precipitation (2020). https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html.
Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).
NOAA/OAR/ESRL PSL. CPC Global Daily Temperature (2020). https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html.
Mandelkern, M. et al. Setting confidence intervals for bounded parameters. Stat. Sci. 17, 149–172 (2002).
Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2008GB003435 (2010).
Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, New York, 2009).
Zuazo, V. H. D. & Pleguezuelo, C. R. R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 28, 65–86 (2008).
Shaxson, F. & Barber, R. Optimizing Soil Moisture for Plant Production, the Significance of Soil Porosity (FAO, 2003).
Swanepoel, C. M. et al. The benefits of conservation agriculture on soil organic carbon and yield in southern Africa are site-specific. Soil Tillage Res. 183, 72–82 (2018).
Derpsch, R. Controle da Erosão no Paraná, Brasil: Sistemas de Cobertura do Solo, Plantio Direto e Preparo Conservacionista do Solo (GTZ/Curitiba, 1991).
Scopel, E., da Silva, F. A. M., Corbeels, M., Affholder, F. & Maraux, F. Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24, 383–395 (2004).
Thierfelder, C. & Wall, P. C. Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J. Crop Improve. 24, 113–121 (2010).
Lal, R. The role of residues management in sustainable agricultural systems. J. Sustain. Agric. 5, 51–78 (1995).
Shen, Y., McLaughlin, N., Zhang, X., Xu, M. & Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 8, 4500 (2018).
Muñoz-Romero, V., Lopez-Bellido, L. & Lopez-Bellido, R. J. Effect of tillage system on soil temperature in a rainfed Mediterranean Vertisol. Int. Agrophys. 29, 467–473 (2015).
Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extr. 10, 4–10 (2015).
Ramakrishna, A., Tam, H. M., Wani, S. P. & Long, T. D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 95, 115–125 (2006).
Kumar, S. & Dey, P. Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry. Sci. Hortic. 127, 318–324 (2011).
van Wijk, W. R., Larson, W. E. & Burrows, W. C. Soil Temperature and the early growth of corn from mulched and unmulched soil. Soil Sci. Soc. Am. J. 23, 428 (1959).
Kodzwa, J. J., Gotosa, J. & Nyamangara, J. Mulching is the most important of the three conservation agriculture principles in increasing crop yield in the short term, under sub humid tropical conditions in Zimbabwe. Soil Tillage Res. 197, 104515 (2020).
Giller, K. E., Witter, E., Corbeels, M. & Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 114, 23–34 (2009).
Andersson, J. A. & D’Souza, S. From adoption claims to understanding farmers and contexts: A literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agric. Ecosyst. Environ. 187, 116–132 (2014).
Mashingaidze, N., Madakadze, C., Twomlow, S., Nyamangara, J. & Hove, L. Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe. Soil Tillage Res. 124, 102–110 (2012).
Watt, M. S., Whitehead, D., Mason, E. G., Richardson, B. & Kimberley, M. O. The influence of weed competition for light and water on growth and dry matter partitioning of young Pinus radiata, at a dryland site. For. Ecol. Manage. 183, 363–376 (2003).
Abouziena, H., El-Saeid, M., Ahmed, A. & Amin, E.-S. Water loss by weeds: A review. Int. J. ChemTech Res. 7, 974–4290 (2014).
Food and Agriculture Organization of the United Nations (FAO). The Economics of Conservation Agriculture (2001).
Olsson, L. et al. Land Degradation. In Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).
Source: Ecology - nature.com