in

Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore

  • 1.

    Daversa, D. R., Fenton, A., Dell, A. I., Garner, T. W. J. & Manica, A. Infections on the move: how transient phases of host movement influence disease spread. Proc. R. Soc. B Biol. Sci. 284, 20171807 (2017).

    Article  Google Scholar 

  • 2.

    Mazé-Guilmo, E., Blanchet, S., McCoy, K. D. & Loot, G. Host dispersal as the driver of parasite genetic structure: a paradigm lost? Ecol. Lett. 19, 336–347 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Kozakiewicz, C. P. et al. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol. Appl. https://doi.org/10.1111/eva.12678 (2018).

  • 5.

    Brüniche-Olsen, A., Burridge, C. P., Austin, J. J. & Jones, M. E. Disease induced changes in gene flow patterns among Tasmanian devil populations. Biol. Conserv. 165, 69–78 (2013).

    Article  Google Scholar 

  • 6.

    Kyle, C. J. et al. Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies. Mol. Ecol. 23, 2287–2298 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Schwabl, P. et al. Prediction and prevention of parasitic diseases using a landscape genomics framework. Trends Parasitol. 33, 264–275 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 113, 10926–10931 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Gijsbers, E. F. et al. Low level of HIV-1 evolution after transmission from mother to child. Sci. Rep. 4, 4650–4655 (2014).

    Google Scholar 

  • 10.

    Lee, J. S. et al. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape. Mol. Ecol. 21, 1617–1631 (2012).

    PubMed  Article  Google Scholar 

  • 11.

    Fountain-Jones, N. M. et al. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol. Ecol. 26, 6487–6498 (2017).

    PubMed  Article  Google Scholar 

  • 12.

    Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. Camb. Philos. Soc. 88, 427–442 (2013).

    PubMed  Article  Google Scholar 

  • 13.

    Mcdonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).

    Article  Google Scholar 

  • 14.

    Riley, S. P. D. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Riley, S. P. D. et al. Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv. Biol. 17, 566–576 (2003).

    Article  Google Scholar 

  • 17.

    Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. Biol. Sci. 284, 20170433 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Tracey, J. A., Bevins, S. N., VandeWoude, S. & Crooks, K. R. An agent-based movement model to assess the impact of landscape fragmentation on disease transmission. Ecosphere 5, 119 (2014).

    Article  Google Scholar 

  • 19.

    Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).

  • 20.

    Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).

    Article  Google Scholar 

  • 21.

    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).

    Article  Google Scholar 

  • 22.

    Blecha, K. A., Boone, R. B. & Alldredge, M. W. Hunger mediates apex predator’s risk avoidance response in wildland-urban interface. J. Anim. Ecol. 87, 609–622 (2018).

    PubMed  Article  Google Scholar 

  • 23.

    Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecol. Appl. 25, 1880–1895 (2015).

    PubMed  Article  Google Scholar 

  • 24.

    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).

    PubMed  Article  Google Scholar 

  • 25.

    Cunningham, M. W. et al. Epizootiology and management of feline leukemia virus in the Florida puma. J. Wildl. Dis. 44, 537–552 (2008).

  • 26.

    Trumbo, D. et al. Urbanization impacts apex predator gene flow but not genetic diversity across an urban-rural divide. Mol. Ecol. 28, 4926–4940 (2019).

  • 27.

    VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin. Microbiol. Rev. 19, 728–762 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Brown, E. W., Yuhki, N., Packer, C. & O’Brien, S. J. A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. J. Virol. 68, 5953–5968 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Biek, R. et al. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J. Virol. 77, 9578–9589 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Biek, R., Ruth, T. K., Murphy, K. M., Anderson, C. R. Jr. & Poss, M. Examining effects of persistent retroviral infection on fitness and pathogen susceptibility in a natural feline host. Can. J. Zool. 84, 365–373 (2006).

    Article  Google Scholar 

  • 31.

    Reynolds, J. J. H. et al. Feline immunodeficiency virus in puma: estimation of force of infection reveals insights into transmission. Ecol. Evol. ece3.5584, https://doi.org/10.1002/ece3.5584 (2019).

  • 32.

    Fountain-Jones, N. M. et al. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J. Anim. Ecol. 86, 1469–1482 (2017).

    PubMed  Article  Google Scholar 

  • 33.

    Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).

    PubMed  Article  Google Scholar 

  • 34.

    Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. London B Biol. Sci. 284, 20170433 (2017).

  • 35.

    Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).

    Article  Google Scholar 

  • 36.

    Clarke, R. T., Rothery, P. & Raybould, A. F. Condence limits for regression relationships between distance matrices: estimating gene flow with distance. J. Agric. Biol. Environ. Stat. https://doi.org/10.1198/108571102320 (2002).

  • 37.

    Chou, J. et al. A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics 16, S2 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol. Ecol. Resour. 18, 55–67 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity (Edinb.) 82, 561–573 (1999).

    Article  Google Scholar 

  • 40.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  Google Scholar 

  • 41.

    Logan, K. A. & Sweanor, L. L. Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore (Island Press, 2001).

  • 42.

    Biek, R. et al. Genetic consequences of sex-biased dispersal in a solitary carnivore: yellowstone cougars. Biol. Lett. 2, 312–315 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Dickson, B. G., Jenness, J. S. & Beier, P. Influence of vegetation, topography, and roads on cougar movement in Southern California. J. Wildl. Manag. 69, 264–276 (2005).

    Article  Google Scholar 

  • 44.

    Kerr, T. J. et al. Viruses as indicators of contemporary host dispersal and phylogeography: an example of feline immunodeficiency virus (FIV Ple) in free-ranging African lion (Panthera leo). J. Evol. Biol. https://doi.org/10.1111/jeb.13348 (2018).

  • 45.

    Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Hornocker, M. G. & Negri, S. Cougar: Ecology and Conservation (University of Chicago Press, 2010).

  • 47.

    Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv. Biol. 14, 798–808 (2000).

    Article  Google Scholar 

  • 48.

    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape‐scale impacts from mountain lions to mice. Ecol. Lett. ele.13344 https://doi.org/10.1111/ele.13344 (2019).

  • 49.

    Tian, H. et al. Transmission dynamics of re-emerging rabies in domestic dogs of rural China. PLOS Pathog. 14, e1007392 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Carver, S. et al. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. Ecol. Appl. 26, 367–381 (2016).

    PubMed  Article  Google Scholar 

  • 51.

    Di Pietro, F., Ortenzi, F., Tilio, M., Concetti, F. & Napolioni, V. Genomic DNA extraction from whole blood stored from 15- to 30-years at −20 °C by rapid phenol–chloroform protocol: a useful tool for genetic epidemiology studies. Mol. Cell. Probes 25, 44–48 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 52.

    Lee, J. S. et al. Targeted enrichment for pathogen detection and characterization in three felid species. J. Clin. Microbiol. 55, 1658–1670 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Lee, J. S. et al. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America. J. Virol. 88, 7727–7737 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).

  • 56.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Stöver, B. C. & Müller, K. F. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinforma. 11, 7 (2010).

    Article  Google Scholar 

  • 58.

    Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4 (2018).

  • 60.

    Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol. 68, 1052–1061, https://doi.org/10.1093/sysbio/syz020 (2019).

  • 61.

    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Gill, M. S. et al. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Lartillot, N. & Philippe, H. Computing Bayes factors using thermodynamic integration. Syst. Biol. 55, 195–207 (2006).

    PubMed  Article  Google Scholar 

  • 66.

    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M.-H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).

    PubMed  Article  Google Scholar 

  • 67.

    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinforma. 14, 85 (2013).

    Article  Google Scholar 

  • 68.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Volz, E. M. et al. Identification of hidden population structure in time-scaled phylogenies. Syst. Biol. 69, 884–896, https://doi.org/10.1093/sysbio/syaa009 (2019).

  • 70.

    Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. phylodyn: an R package for phylodynamic simulation and inference. Mol. Ecol. Resour. 17, 96–100 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Swofford, D. L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10 (Sinauer Associates, 2002).

  • 76.

    Peterman, W. E. ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).

    Article  Google Scholar 

  • 77.

    Pierce, B. M., Bleich, V. C. & Bowyer, R. T. Social organization of mountain lions: does a land-tenure system regulate population size? Ecology 81, 1533–1543 (2000).

    Article  Google Scholar 

  • 78.

    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

    PubMed  Article  Google Scholar 

  • 79.

    Fitzpatrick, M. C. et al. Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography 34, 836–847 (2011).

    Article  Google Scholar 

  • 80.

    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Dellicour, S. et al. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinforma. 17, 82–94 (2016).

    Article  CAS  Google Scholar 

  • 82.

    Laenen, L. et al. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol. Ecol. 25, 5994–6008 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).

    Article  Google Scholar 

  • 84.

    Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress