in

Impact of noise on development, physiological stress and behavioural patterns in larval zebrafish

  • 1.

    Miedema, H., Janssen, S., Rokho, K. & Brown, L. Burden of disease from environmental noise: quantification of healthy life years lost in Europe (2011).

  • 2.

    Peris, E. Environmental noise in Europe: 2020. Eur. Environ. Agency 1, 104 (2020).

    Google Scholar 

  • 3.

    Merchant, N. D. Underwater noise abatement: Economic factors and policy options. Environ. Sci. Policy 92, 116–123 (2019).

    Article 

    Google Scholar 

  • 4.

    Babisch, W. et al. Auditory and non-auditory effects of noise on health. NIH Lancet 23, 1–7 (2014).

    Google Scholar 

  • 5.

    Recio, A., Linares, C., Banegas, J. R. & Díaz, J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: an integrative model of biological mechanisms. Environ. Res. 146, 359–370 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91, 982–1005 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol. Lett. 14, 1052–1061 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Whitfield, A. K. & Becker, A. Impacts of recreational motorboats on fishes: a review. Mar. Pollut. Bull. 83, 24–31 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Popper, A. N. N. & Hastings, M. C. C. The effects of anthropogenic sources of sound on fishes. J. Fish Biol. 75, 455–489 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Bejder, L., Samuels, A., Whitehead, H., Finn, H. & Allen, S. Impact assessment research: use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Mar. Ecol. Prog. Ser. 395, 177–185 (2009).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Wale, M. A., Simpson, S. D. & Radford, A. N. Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise. Biol. Lett. 9, 20121194 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Nedelec, S. L., Simpson, S. D., Morley, E. L., Nedelec, B. & Radford, A. N. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua). Proc. R. Soc. B 282, 20151943 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 14.

    Johansson, K., Sigray, P., Backström, T. & Magnhagen, C. Stress response and habituation to motorboat noise in two coastal fish species in the Bothnian Sea. In The Effects of Noise on Aquatic Life II 273–279 (2016).

  • 15.

    Holmes, L. J., McWilliam, J., Ferrari, M. C. O. & McCormick, M. I. Juvenile damselfish are affected but desensitize to small motor boat noise. J. Exp. Mar. Bio. Ecol. 494, 63–68 (2017).

    Article 

    Google Scholar 

  • 16.

    Reid, S. G., Bernier, N. J. & Perry, S. F. The adrenergic stress response in fish: Control of catecholamine storage and release. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 120, 1–27 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Rajalakshmi, R., John, N. A. & John, J. Review on noise pollution and its associated health hazards. Sch. J. Appl. Med. Sci. 4, 500–503 (2016).

    Google Scholar 

  • 18.

    Christie, K. W. & Eberl, D. F. Noise-induced hearing loss: new animal models. Curr. Opin. Otolaryngol. Head Neck Surg. 22, 374–383 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Ortega, C. P. Effects of noise pollution on birds: A brief review of our knowledge. Source Ornithol. Monogr. Ornithol. Monogr. 74, 6–22 (2012).

    Article 

    Google Scholar 

  • 20.

    Simmons, A. M. & Narins, P. M. Effects of anthropogenic noise on amphibians and reptiles. In Springer Handbook of Auditory Research 179–208 (Springer, 2018).

  • 21.

    de Soto, N. A. et al. Anthropogenic noise causes body malformations and delays development in marine larvae. Sci. Rep. 3, 2831 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Soto, N. A. de. Peer-reviewed studies on the effects of anthropogenic noise on marine invertebrates: from scallop larvae to giant squid. Eff. Noise Aquat. Life II 875, 273–279 (2016).

  • 23.

    Brouček, J. Effect of noise on performance, stress, and behaviour of animals. Slovak J. Anim. Sci 47, 111–123 (2014).

    Google Scholar 

  • 24.

    Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, 1–8 (2014).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Erbe, C., Dunlop, R. & Dolman, S. Effects of noise on marine mammals. In Effects of Anthropogenic Noise on Animals 277–309 (Springer, 2018).

  • 26.

    Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. R. Soc. B 283, 20160839 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    van der Sluijs, I. et al. Communication in troubled waters: responses of fish communication systems to changing environments. Evol. Ecol. 25, 623–640 (2011).

    Article 

    Google Scholar 

  • 28.

    Cox, B. S., Dux, A. M., Quist, M. C. & Guy, C. S. Use of a seismic air gun to reduce survival of nonnative lake trout embryos: a tool for conservation?. N. Am. J. Fish. Manag. 32, 292–298 (2012).

    Article 

    Google Scholar 

  • 29.

    Wysocki, L. E. et al. Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss. Aquaculture 272, 687–697 (2007).

    Article 

    Google Scholar 

  • 30.

    Debusschere, E. et al. Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving. Environ. Pollut. 208, 747–757 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Filiciotto, F. et al. Impact of aquatic acoustic noise on oxidative status and some immune parameters in gilthead sea bream Sparus aurata (Linnaeus, 1758) juveniles. Aquac. Res. 48, 1895–1903 (2017).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Smith, M. E., Kane, A. S. & Popper, A. N. Noise-induced stress response and hearing loss in goldfish (Carassius auratus). J. Exp. Biol. 207, 427–435 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Vasconcelos, R. O., Amorim, M. C. P. & Ladich, F. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J. Exp. Biol. 210, 2104–2112 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Hasan, M. R., Crane, A. L., Ferrari, M. C. O. & Chivers, D. P. A cross-modal effect of noise: the disappearance of the alarm reaction of a freshwater fish. Anim. Cogn. 21, 419–424 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Herbert-Read, J. E., Kremer, L., Bruintjes, R., Radford, A. N. & Ioannou, C. C. Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals. Proc. R. Soc. B Biol. Sci. 284, 1–9 (2017).

    Google Scholar 

  • 36.

    Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).

    Article 

    Google Scholar 

  • 37.

    Ladich, F. Acoustic communication and the evolution of hearing in fishes. Philos. Trans. R. Soc. B Biol. Sci. 355, 1285–1288 (2000).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Radford, A. N., Kerridge, E. & Simpson, S. D. Acoustic communication in a noisy world: can fish compete with anthropogenic noise?. Behav. Ecol. 25, 1022–1030 (2014).

    Article 

    Google Scholar 

  • 39.

    Dooling, R. J. & Popper, A. N. The effects of highway noise on birds. Environ. Bioacoust. 27, 1–74 (2007).

    Google Scholar 

  • 40.

    Blom, E. L. et al. Continuous but not intermittent noise has a negative impact on mating success in a marine fish with paternal care. Sci. Rep. 9, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Bureš, Z., Popelář, J. & Syka, J. Noise exposure during early development impairs the processing of sound intensity in adult rats. Hear. Res. 352, 1–11 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Dorado-Correa, A. M., Zollinger, S. A., Heidinger, B. & Brumm, H. Timing matters: traffic noise accelerates telomere loss rate differently across developmental stages. Front. Zool. 15, 1–8 (2018).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Mueller, C. A. Critical Windows in Animal Development: Interactions Between Environment, Phenotype, and Time (Springer, 2018).

    Google Scholar 

  • 44.

    Gordon, T. A. C. et al. Acoustic enrichment can enhance fish community development on degraded coral reef habitat. Nat. Commun. 10, 1–7 (2019).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Radford, A. N., Lebre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change Biol. 22, 3349–3360 (2016).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Banner, A. & Hyatt, M. Effects of noise on eggs and larvae of two estuarine fishes. Trans. Am. Fish. Soc. 102, 142–144 (1973).

    Article 

    Google Scholar 

  • 47.

    Fakan, E. P. & McCormick, M. I. Boat noise affects the early life history of two damselfishes. Mar. Pollut. Bull. 141, 493–500 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Jain-Schlaepfer, S., Fakan, E., Rummer, J. L., Simpson, S. D. & McCormick, M. I. Impact of motorboats on fish embryos depends on engine type. Conserv. Physiol. 6, 1–9 (2018).

    Google Scholar 

  • 49.

    Brittijn, S. A. et al. Zebrafish development and regeneration: new tools for biomedical research. Int. J. Dev. Biol. 53, 835–850 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Magyary, I. Recent advances and future trends in zebrafish bioassays for aquatic ecotoxicology. Ecocycles 4, 12–18 (2018).

    Article 

    Google Scholar 

  • 51.

    Sarmah, S. & Marrs, J. A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int. J. Mol. Sci. 17, 1–16 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Varshney, G. K., Pei, W. & Burgess, S. M. Using zebrafish to study human deafness and hearing regeneration. Monogr. Hum. Genet. 20, 110–131 (2016).

    Article 

    Google Scholar 

  • 53.

    Uribe, P. M. et al. Larval zebrafish lateral line as a model for acoustic trauma. Eneuro 5, 0206–0218 (2018).

    Article 

    Google Scholar 

  • 54.

    Bhandiwad, A. A., Raible, D. W., Rubel, E. W. & Sisneros, J. A. Noise-Induced hypersensitization of the acoustic startle response in larval zebrafish. JARO 19, 741–752 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Lara, R. A. & Vasconcelos, R. O. Characterization of the natural soundscape of zebrafish and comparison with the captive noise conditions. Zebrafish 8, 1–13 (2018).

    CAS 

    Google Scholar 

  • 56.

    Lalonde, R. The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev. 26, 91–104 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Bogli, S. Y. & Huang, M. Y. Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Bruintjes, R. & Radford, A. N. Chronic playback of boat noise does not impact hatching success or post-hatching larval growth and survival in a cichlid fish. PeerJ 2, e594 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Davidson, J., Bebak, J. & Mazik, P. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout Oncorhynchus mykiss. Aquaculture 288, 337–343 (2009).

    Article 

    Google Scholar 

  • 60.

    Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).

    Article 

    Google Scholar 

  • 61.

    Craig, M. P., Gilday, S. D. & Hove, J. R. Dose-dependent effects of chemical immobilization on the heart rate of embryonic zebrafish. Lab Anim. (NY) 35, 40–47 (2006).

    Article 

    Google Scholar 

  • 62.

    Barrionuevo, W. R. & Burggren, W. W. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am. Physiol. Soc. 276, 505–513 (2013).

    Google Scholar 

  • 63.

    De Luca, E. et al. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci. Rep. 4, 1–13 (2014).

    Google Scholar 

  • 64.

    Simpson, S. D., Yan, H. Y., Wittenrich, M. L. & Meekan, M. G. Response of embryonic coral reef fishes (Pomacentridae: Amphiprion spp.) to noise. Mar. Ecol. Prog. Ser. 287, 201–208 (2005).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Anderson, W. G. et al. Remote monitoring of heart rate as a measure of recovery in angled Atlantic salmon, Salmo salar (L.). Hydrobiologia 371–372, 233–240 (1998).

    Article 

    Google Scholar 

  • 66.

    Armstrong, J. D. Heart rate as an indicator of activity, metabolic rate, food intake and digestion in pike Esox lucius. J. Fish Biol. 29, 207–221 (1986).

    Article 

    Google Scholar 

  • 67.

    Svendsen, E. et al. Heart rate and swimming activity as stress indicators for Atlantic salmon (Salmo salar). Aquaculture 531, 735804 (2020).

    Article 
    CAS 

    Google Scholar 

  • 68.

    Burleson, M. L. & Silva, P. E. Cross tolerance to environmental stressors: effects of hypoxic acclimation on cardiovascular responses of channel catfish (Ictalurus punctatus) to a thermal challenge. Bone 23, 1–7 (2008).

    Google Scholar 

  • 69.

    Brown, C., Gardner, C. & Braithwaite, V. A. Differential stress responses in fish from areas of high- and low-predation pressure. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 175, 305–312 (2005).

    Article 

    Google Scholar 

  • 70.

    McEwen, B. S. & Stellar, E. Stress and individual. Arch Intern. Med. 153, 2093–2101 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Mccormick, M. I. Behaviorally induced maternal stress in a fish influences progeny quality by a hormonal mechanism. Ecology 79, 1873–1883 (1998).

    Article 

    Google Scholar 

  • 72.

    Yabu, T., Ishibashi, Y. & Yamashita, M. Stress-induced apoptosis in larval embryos of Japanese flounder. Fish. Sci. 69, 1218–1223 (2003).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Werner, I., Linares-Casenave, J., Van Eenennaam, J. P. & Doroshov, S. I. The effect of temperature stress on development and heat-shock protein expression in larval green sturgeon (Acipenser mirostris). Environ. Biol. Fishes 79, 191–200 (2007).

    Article 

    Google Scholar 

  • 74.

    Shi, Z. et al. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture 275, 306–310 (2008).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Wilson, K. S. et al. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio). J. Physiol. 591, 6209–6220 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Tudorache, C., Ter Braake, A., Tromp, M., Slabbekoorn, H. & Schaaf, M. J. M. Behavioral and physiological indicators of stress coping styles in larval zebrafish. Stress 3890, 121–128 (2015).

    Article 
    CAS 

    Google Scholar 

  • 77.

    Alsop, D. & Vijayan, M. M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, 711–719 (2008).

    Article 
    CAS 

    Google Scholar 

  • 78.

    Bai, Y., Liu, H., Huang, B., Wagle, M. & Guo, S. Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neurosci. 17, 1–12 (2016).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Barton, B. A. & Zitzow, R. E. Physiological responses of juvenile walleyes to handling stress with recovery in saline water. Progress. Fish-Cult. 57, 267–276 (1995).

    Article 

    Google Scholar 

  • 80.

    Yao, Q., DeSmidt, A. A., Tekin, M., Liu, X. & Lu, Z. Hearing assessment in zebrafish during the first week postfertilization. Zebrafish 13, 79–86 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Colwill, R. M. & Creton, R. Imaging escape and avoidance behavior in zebrafish larvae. Rev. Neurosci. 22, 63–73 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Voellmy, I. K. et al. Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms. Anim. Behav. 89, 191–198 (2014).

    Article 

    Google Scholar 

  • 83.

    Belzung, C. & Griebel, G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Sireeni, J. et al. Profound effects of glucocorticoid resistance on anxiety-related behavior in zebrafish adults but not in larvae. Gen. Comp. Endocrinol. 292, 130–138 (2020).

    Article 
    CAS 

    Google Scholar 

  • 85.

    Basnet, R. M., Zizioli, D., Taweedet, S., Finazzi, D. & Memo, M. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7, 1–16 (2019).

    Article 
    CAS 

    Google Scholar 

  • 86.

    Peng, X. et al. Anxiety-related behavioral responses of pentylenetetrazole-treated zebrafish larvae to light-dark transitions. Pharmacol. Biochem. Behav. 145, 55–65 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Stewart, A. et al. Neurophenotyping of adult zebrafish using the light/dark box paradigm. NeuroMethods 51, 157–167 (2011).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Bögli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Mueller, T., Dong, Z., Berberoglu, M. A. & Guo, S. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res. 1381, 95–105 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Fotowat, H., Lee, C., Jun, J. J. & Maler, L. Neural activity in a hippocampus-like region of the teleost pallium are associated with navigation and active sensing. bioRxiv 8, 1–25 (2018).

  • 91.

    Broglio, C. et al. Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res. Bull. 66, 277–281 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Cheng, L., Wang, S. H., Chen, Q. C. & Liao, X. M. Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiol. Behav. 104, 981–988 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Jauregui-huerta, F., Garcia-estrada, J. & Gonzalez-perez, O. Early exposure to noise followed by predator stress in adulthood impairs the rat’s
    re-learning flexibility in Radial Arm Water Maze. Neuro Endocrinol. Lett. 31, 1–12 (2010).

    Google Scholar 

  • 94.

    Rodriguez, M. & Afonso, D. Ontogeny of T-maze behavioral lateralization in rats. Physiol. Behav. 54, 91–94 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Nichols, T. A., Anderson, T. W. & Ana, Š. Intermittent noise induces physiological stress in a coastal marine fish. PLoS ONE 10, 1–13 (2015).

    CAS 

    Google Scholar 

  • 96.

    Neo, Y. Y. et al. Sound exposure changes European seabass behaviour in a large outdoor floating pen: effects of temporal structure and a ramp-up procedure. Environ. Pollut. 214, 26–34 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Celi, M. et al. Vessel noise pollution as a human threat to fish: assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758). Fish Physiol. Biochem. 42, 631–641 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Erbe, C. Underwater noise of small personal watercraft (jet skis). J. Acoust. Soc. Am. 133, EL326–EL330 (2013).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Department of the Environment and Water Resources. Comparative Assessment of the Environmental Performance of Small Engines Marine Outboards and Personal Watercraft. Environmental Science and Technology (2007).

  • 100.

    Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) 5th edn. (University of Oregon Press, Eugene, 2000).

    Google Scholar 

  • 101.

    Lu, Z. & Desmidt, A. A. Early development of hearing in zebrafish. JARO 14, 509–521 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Strykowski, J. L. & Schech, J. M. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 54, 81–84 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Amoser, S., Wysocki, L. E. & Ladich, F. Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities. J. Acoust. Soc. Am. 116, 3789–3797 (2004).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 104.

    Codarin, A., Wysocki, L. E., Ladich, F. & Picciulin, M. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Mar. Pollut. Bull. 58, 1880–1887 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Shafiei Sabet, S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).

    Article 

    Google Scholar 

  • 106.

    Nedelec, S. L. et al. Particle motion: the missing link in underwater acoustic ecology. Methods Ecol. Evol. 7, 836–842 (2016).

    Article 

    Google Scholar 

  • 107.

    Chan, P. K., Lin, C. C. & Cheng, S. H. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC Biotechnol. 9, 1–10 (2009).

    Article 

    Google Scholar 

  • 108.

    Teixidó, E. et al. Automated morphological feature assessment for zebrafish embryo developmental toxicity screens. Toxicol. Sci. 167, 438–449 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 109.

    Lau, B. Y. B., Mathur, P., Gould, G. G. & Guo, S. Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 108, 2581–2586 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 110.

    Bögli, S. Y., Huang, M.Y.-Y., Bogli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 111.

    Frederickson, C. J. & Frederickson, M. H. Developmental changes in open-field behavior in the kitten. Dev. Psychobiol. 12, 623–628 (1979).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 112.

    Vecera, S. P., Rothbart, M. K. & Posner, M. I. Development of spontaneous alternation in infancy. J. Cogn. Neurosci. 3, 351–354 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 113.

    Bogli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 114.

    Du Sert, N. P. et al. The arrive guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, 1–12 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    Study reveals plunge in lithium-ion battery costs