Miedema, H., Janssen, S., Rokho, K. & Brown, L. Burden of disease from environmental noise: quantification of healthy life years lost in Europe (2011).
Peris, E. Environmental noise in Europe: 2020. Eur. Environ. Agency 1, 104 (2020).
Merchant, N. D. Underwater noise abatement: Economic factors and policy options. Environ. Sci. Policy 92, 116–123 (2019).
Google Scholar
Babisch, W. et al. Auditory and non-auditory effects of noise on health. NIH Lancet 23, 1–7 (2014).
Recio, A., Linares, C., Banegas, J. R. & Díaz, J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: an integrative model of biological mechanisms. Environ. Res. 146, 359–370 (2016).
Google Scholar
Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91, 982–1005 (2016).
Google Scholar
Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).
Google Scholar
Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol. Lett. 14, 1052–1061 (2011).
Google Scholar
Whitfield, A. K. & Becker, A. Impacts of recreational motorboats on fishes: a review. Mar. Pollut. Bull. 83, 24–31 (2014).
Google Scholar
Popper, A. N. N. & Hastings, M. C. C. The effects of anthropogenic sources of sound on fishes. J. Fish Biol. 75, 455–489 (2009).
Google Scholar
Bejder, L., Samuels, A., Whitehead, H., Finn, H. & Allen, S. Impact assessment research: use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Mar. Ecol. Prog. Ser. 395, 177–185 (2009).
Google Scholar
Wale, M. A., Simpson, S. D. & Radford, A. N. Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise. Biol. Lett. 9, 20121194 (2013).
Google Scholar
Nedelec, S. L., Simpson, S. D., Morley, E. L., Nedelec, B. & Radford, A. N. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua). Proc. R. Soc. B 282, 20151943 (2015).
Google Scholar
Johansson, K., Sigray, P., Backström, T. & Magnhagen, C. Stress response and habituation to motorboat noise in two coastal fish species in the Bothnian Sea. In The Effects of Noise on Aquatic Life II 273–279 (2016).
Holmes, L. J., McWilliam, J., Ferrari, M. C. O. & McCormick, M. I. Juvenile damselfish are affected but desensitize to small motor boat noise. J. Exp. Mar. Bio. Ecol. 494, 63–68 (2017).
Google Scholar
Reid, S. G., Bernier, N. J. & Perry, S. F. The adrenergic stress response in fish: Control of catecholamine storage and release. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 120, 1–27 (1998).
Google Scholar
Rajalakshmi, R., John, N. A. & John, J. Review on noise pollution and its associated health hazards. Sch. J. Appl. Med. Sci. 4, 500–503 (2016).
Christie, K. W. & Eberl, D. F. Noise-induced hearing loss: new animal models. Curr. Opin. Otolaryngol. Head Neck Surg. 22, 374–383 (2014).
Google Scholar
Ortega, C. P. Effects of noise pollution on birds: A brief review of our knowledge. Source Ornithol. Monogr. Ornithol. Monogr. 74, 6–22 (2012).
Google Scholar
Simmons, A. M. & Narins, P. M. Effects of anthropogenic noise on amphibians and reptiles. In Springer Handbook of Auditory Research 179–208 (Springer, 2018).
de Soto, N. A. et al. Anthropogenic noise causes body malformations and delays development in marine larvae. Sci. Rep. 3, 2831 (2013).
Google Scholar
Soto, N. A. de. Peer-reviewed studies on the effects of anthropogenic noise on marine invertebrates: from scallop larvae to giant squid. Eff. Noise Aquat. Life II 875, 273–279 (2016).
Brouček, J. Effect of noise on performance, stress, and behaviour of animals. Slovak J. Anim. Sci 47, 111–123 (2014).
Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, 1–8 (2014).
Google Scholar
Erbe, C., Dunlop, R. & Dolman, S. Effects of noise on marine mammals. In Effects of Anthropogenic Noise on Animals 277–309 (Springer, 2018).
Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. R. Soc. B 283, 20160839 (2016).
Google Scholar
van der Sluijs, I. et al. Communication in troubled waters: responses of fish communication systems to changing environments. Evol. Ecol. 25, 623–640 (2011).
Google Scholar
Cox, B. S., Dux, A. M., Quist, M. C. & Guy, C. S. Use of a seismic air gun to reduce survival of nonnative lake trout embryos: a tool for conservation?. N. Am. J. Fish. Manag. 32, 292–298 (2012).
Google Scholar
Wysocki, L. E. et al. Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss. Aquaculture 272, 687–697 (2007).
Google Scholar
Debusschere, E. et al. Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving. Environ. Pollut. 208, 747–757 (2016).
Google Scholar
Filiciotto, F. et al. Impact of aquatic acoustic noise on oxidative status and some immune parameters in gilthead sea bream Sparus aurata (Linnaeus, 1758) juveniles. Aquac. Res. 48, 1895–1903 (2017).
Google Scholar
Smith, M. E., Kane, A. S. & Popper, A. N. Noise-induced stress response and hearing loss in goldfish (Carassius auratus). J. Exp. Biol. 207, 427–435 (2004).
Google Scholar
Vasconcelos, R. O., Amorim, M. C. P. & Ladich, F. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J. Exp. Biol. 210, 2104–2112 (2007).
Google Scholar
Hasan, M. R., Crane, A. L., Ferrari, M. C. O. & Chivers, D. P. A cross-modal effect of noise: the disappearance of the alarm reaction of a freshwater fish. Anim. Cogn. 21, 419–424 (2018).
Google Scholar
Herbert-Read, J. E., Kremer, L., Bruintjes, R., Radford, A. N. & Ioannou, C. C. Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals. Proc. R. Soc. B Biol. Sci. 284, 1–9 (2017).
Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).
Google Scholar
Ladich, F. Acoustic communication and the evolution of hearing in fishes. Philos. Trans. R. Soc. B Biol. Sci. 355, 1285–1288 (2000).
Google Scholar
Radford, A. N., Kerridge, E. & Simpson, S. D. Acoustic communication in a noisy world: can fish compete with anthropogenic noise?. Behav. Ecol. 25, 1022–1030 (2014).
Google Scholar
Dooling, R. J. & Popper, A. N. The effects of highway noise on birds. Environ. Bioacoust. 27, 1–74 (2007).
Blom, E. L. et al. Continuous but not intermittent noise has a negative impact on mating success in a marine fish with paternal care. Sci. Rep. 9, 1–9 (2019).
Google Scholar
Bureš, Z., Popelář, J. & Syka, J. Noise exposure during early development impairs the processing of sound intensity in adult rats. Hear. Res. 352, 1–11 (2017).
Google Scholar
Dorado-Correa, A. M., Zollinger, S. A., Heidinger, B. & Brumm, H. Timing matters: traffic noise accelerates telomere loss rate differently across developmental stages. Front. Zool. 15, 1–8 (2018).
Google Scholar
Mueller, C. A. Critical Windows in Animal Development: Interactions Between Environment, Phenotype, and Time (Springer, 2018).
Gordon, T. A. C. et al. Acoustic enrichment can enhance fish community development on degraded coral reef habitat. Nat. Commun. 10, 1–7 (2019).
Google Scholar
Radford, A. N., Lebre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change Biol. 22, 3349–3360 (2016).
Google Scholar
Banner, A. & Hyatt, M. Effects of noise on eggs and larvae of two estuarine fishes. Trans. Am. Fish. Soc. 102, 142–144 (1973).
Google Scholar
Fakan, E. P. & McCormick, M. I. Boat noise affects the early life history of two damselfishes. Mar. Pollut. Bull. 141, 493–500 (2019).
Google Scholar
Jain-Schlaepfer, S., Fakan, E., Rummer, J. L., Simpson, S. D. & McCormick, M. I. Impact of motorboats on fish embryos depends on engine type. Conserv. Physiol. 6, 1–9 (2018).
Brittijn, S. A. et al. Zebrafish development and regeneration: new tools for biomedical research. Int. J. Dev. Biol. 53, 835–850 (2009).
Google Scholar
Magyary, I. Recent advances and future trends in zebrafish bioassays for aquatic ecotoxicology. Ecocycles 4, 12–18 (2018).
Google Scholar
Sarmah, S. & Marrs, J. A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int. J. Mol. Sci. 17, 1–16 (2016).
Google Scholar
Varshney, G. K., Pei, W. & Burgess, S. M. Using zebrafish to study human deafness and hearing regeneration. Monogr. Hum. Genet. 20, 110–131 (2016).
Google Scholar
Uribe, P. M. et al. Larval zebrafish lateral line as a model for acoustic trauma. Eneuro 5, 0206–0218 (2018).
Google Scholar
Bhandiwad, A. A., Raible, D. W., Rubel, E. W. & Sisneros, J. A. Noise-Induced hypersensitization of the acoustic startle response in larval zebrafish. JARO 19, 741–752 (2018).
Google Scholar
Lara, R. A. & Vasconcelos, R. O. Characterization of the natural soundscape of zebrafish and comparison with the captive noise conditions. Zebrafish 8, 1–13 (2018).
Google Scholar
Lalonde, R. The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev. 26, 91–104 (2002).
Google Scholar
Bogli, S. Y. & Huang, M. Y. Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).
Google Scholar
Bruintjes, R. & Radford, A. N. Chronic playback of boat noise does not impact hatching success or post-hatching larval growth and survival in a cichlid fish. PeerJ 2, e594 (2014).
Google Scholar
Davidson, J., Bebak, J. & Mazik, P. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout Oncorhynchus mykiss. Aquaculture 288, 337–343 (2009).
Google Scholar
Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).
Google Scholar
Craig, M. P., Gilday, S. D. & Hove, J. R. Dose-dependent effects of chemical immobilization on the heart rate of embryonic zebrafish. Lab Anim. (NY) 35, 40–47 (2006).
Google Scholar
Barrionuevo, W. R. & Burggren, W. W. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am. Physiol. Soc. 276, 505–513 (2013).
De Luca, E. et al. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci. Rep. 4, 1–13 (2014).
Simpson, S. D., Yan, H. Y., Wittenrich, M. L. & Meekan, M. G. Response of embryonic coral reef fishes (Pomacentridae: Amphiprion spp.) to noise. Mar. Ecol. Prog. Ser. 287, 201–208 (2005).
Google Scholar
Anderson, W. G. et al. Remote monitoring of heart rate as a measure of recovery in angled Atlantic salmon, Salmo salar (L.). Hydrobiologia 371–372, 233–240 (1998).
Google Scholar
Armstrong, J. D. Heart rate as an indicator of activity, metabolic rate, food intake and digestion in pike Esox lucius. J. Fish Biol. 29, 207–221 (1986).
Google Scholar
Svendsen, E. et al. Heart rate and swimming activity as stress indicators for Atlantic salmon (Salmo salar). Aquaculture 531, 735804 (2020).
Google Scholar
Burleson, M. L. & Silva, P. E. Cross tolerance to environmental stressors: effects of hypoxic acclimation on cardiovascular responses of channel catfish (Ictalurus punctatus) to a thermal challenge. Bone 23, 1–7 (2008).
Brown, C., Gardner, C. & Braithwaite, V. A. Differential stress responses in fish from areas of high- and low-predation pressure. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 175, 305–312 (2005).
Google Scholar
McEwen, B. S. & Stellar, E. Stress and individual. Arch Intern. Med. 153, 2093–2101 (1993).
Google Scholar
Mccormick, M. I. Behaviorally induced maternal stress in a fish influences progeny quality by a hormonal mechanism. Ecology 79, 1873–1883 (1998).
Google Scholar
Yabu, T., Ishibashi, Y. & Yamashita, M. Stress-induced apoptosis in larval embryos of Japanese flounder. Fish. Sci. 69, 1218–1223 (2003).
Google Scholar
Werner, I., Linares-Casenave, J., Van Eenennaam, J. P. & Doroshov, S. I. The effect of temperature stress on development and heat-shock protein expression in larval green sturgeon (Acipenser mirostris). Environ. Biol. Fishes 79, 191–200 (2007).
Google Scholar
Shi, Z. et al. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture 275, 306–310 (2008).
Google Scholar
Wilson, K. S. et al. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio). J. Physiol. 591, 6209–6220 (2013).
Google Scholar
Tudorache, C., Ter Braake, A., Tromp, M., Slabbekoorn, H. & Schaaf, M. J. M. Behavioral and physiological indicators of stress coping styles in larval zebrafish. Stress 3890, 121–128 (2015).
Google Scholar
Alsop, D. & Vijayan, M. M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, 711–719 (2008).
Google Scholar
Bai, Y., Liu, H., Huang, B., Wagle, M. & Guo, S. Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neurosci. 17, 1–12 (2016).
Google Scholar
Barton, B. A. & Zitzow, R. E. Physiological responses of juvenile walleyes to handling stress with recovery in saline water. Progress. Fish-Cult. 57, 267–276 (1995).
Google Scholar
Yao, Q., DeSmidt, A. A., Tekin, M., Liu, X. & Lu, Z. Hearing assessment in zebrafish during the first week postfertilization. Zebrafish 13, 79–86 (2016).
Google Scholar
Colwill, R. M. & Creton, R. Imaging escape and avoidance behavior in zebrafish larvae. Rev. Neurosci. 22, 63–73 (2011).
Google Scholar
Voellmy, I. K. et al. Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms. Anim. Behav. 89, 191–198 (2014).
Google Scholar
Belzung, C. & Griebel, G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149 (2001).
Google Scholar
Sireeni, J. et al. Profound effects of glucocorticoid resistance on anxiety-related behavior in zebrafish adults but not in larvae. Gen. Comp. Endocrinol. 292, 130–138 (2020).
Google Scholar
Basnet, R. M., Zizioli, D., Taweedet, S., Finazzi, D. & Memo, M. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7, 1–16 (2019).
Google Scholar
Peng, X. et al. Anxiety-related behavioral responses of pentylenetetrazole-treated zebrafish larvae to light-dark transitions. Pharmacol. Biochem. Behav. 145, 55–65 (2016).
Google Scholar
Stewart, A. et al. Neurophenotyping of adult zebrafish using the light/dark box paradigm. NeuroMethods 51, 157–167 (2011).
Google Scholar
Bögli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).
Google Scholar
Mueller, T., Dong, Z., Berberoglu, M. A. & Guo, S. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res. 1381, 95–105 (2011).
Google Scholar
Fotowat, H., Lee, C., Jun, J. J. & Maler, L. Neural activity in a hippocampus-like region of the teleost pallium are associated with navigation and active sensing. bioRxiv 8, 1–25 (2018).
Broglio, C. et al. Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res. Bull. 66, 277–281 (2005).
Google Scholar
Cheng, L., Wang, S. H., Chen, Q. C. & Liao, X. M. Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiol. Behav. 104, 981–988 (2011).
Google Scholar
Jauregui-huerta, F., Garcia-estrada, J. & Gonzalez-perez, O. Early exposure to noise followed by predator stress in adulthood impairs the rat’s
re-learning flexibility in Radial Arm Water Maze. Neuro Endocrinol. Lett. 31, 1–12 (2010).
Rodriguez, M. & Afonso, D. Ontogeny of T-maze behavioral lateralization in rats. Physiol. Behav. 54, 91–94 (1993).
Google Scholar
Nichols, T. A., Anderson, T. W. & Ana, Š. Intermittent noise induces physiological stress in a coastal marine fish. PLoS ONE 10, 1–13 (2015).
Google Scholar
Neo, Y. Y. et al. Sound exposure changes European seabass behaviour in a large outdoor floating pen: effects of temporal structure and a ramp-up procedure. Environ. Pollut. 214, 26–34 (2016).
Google Scholar
Celi, M. et al. Vessel noise pollution as a human threat to fish: assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758). Fish Physiol. Biochem. 42, 631–641 (2016).
Google Scholar
Erbe, C. Underwater noise of small personal watercraft (jet skis). J. Acoust. Soc. Am. 133, EL326–EL330 (2013).
Google Scholar
Department of the Environment and Water Resources. Comparative Assessment of the Environmental Performance of Small Engines Marine Outboards and Personal Watercraft. Environmental Science and Technology (2007).
Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) 5th edn. (University of Oregon Press, Eugene, 2000).
Lu, Z. & Desmidt, A. A. Early development of hearing in zebrafish. JARO 14, 509–521 (2013).
Google Scholar
Strykowski, J. L. & Schech, J. M. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 54, 81–84 (2015).
Google Scholar
Amoser, S., Wysocki, L. E. & Ladich, F. Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities. J. Acoust. Soc. Am. 116, 3789–3797 (2004).
Google Scholar
Codarin, A., Wysocki, L. E., Ladich, F. & Picciulin, M. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Mar. Pollut. Bull. 58, 1880–1887 (2009).
Google Scholar
Shafiei Sabet, S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).
Google Scholar
Nedelec, S. L. et al. Particle motion: the missing link in underwater acoustic ecology. Methods Ecol. Evol. 7, 836–842 (2016).
Google Scholar
Chan, P. K., Lin, C. C. & Cheng, S. H. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC Biotechnol. 9, 1–10 (2009).
Google Scholar
Teixidó, E. et al. Automated morphological feature assessment for zebrafish embryo developmental toxicity screens. Toxicol. Sci. 167, 438–449 (2019).
Google Scholar
Lau, B. Y. B., Mathur, P., Gould, G. G. & Guo, S. Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 108, 2581–2586 (2011).
Google Scholar
Bögli, S. Y., Huang, M.Y.-Y., Bogli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).
Google Scholar
Frederickson, C. J. & Frederickson, M. H. Developmental changes in open-field behavior in the kitten. Dev. Psychobiol. 12, 623–628 (1979).
Google Scholar
Vecera, S. P., Rothbart, M. K. & Posner, M. I. Development of spontaneous alternation in infancy. J. Cogn. Neurosci. 3, 351–354 (1991).
Google Scholar
Bogli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).
Google Scholar
Du Sert, N. P. et al. The arrive guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, 1–12 (2020).
Source: Ecology - nature.com