Bowman, D. M. et al. Fire in the earth system. Science 324, 481–484. https://doi.org/10.1126/science.1163886 (2009).
Scott, A. C. The pre-quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329. https://doi.org/10.1016/s0031-0182(00)00192-9 (2000).
Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl. Acad. Sci. 108, 5209–5214. https://doi.org/10.1073/pnas.1018116108 (2011).
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildl. Fire 18, 483–507. https://doi.org/10.1071/wf08187 (2009).
Hantson, S., Pueyo, S. & Chuvieco, E. Global fire size distribution is driven by human impact and climate: Spatial trends in global fire size distribution. Glob. Ecol. Biogeogr. 24, 77–86. https://doi.org/10.1111/geb.12246 (2015).
Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).
Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S. & Kloster, S. Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophys. Res. Lett. 43, 6324–6331. https://doi.org/10.1002/2016gl069365 (2016).
Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4): ANALYSIS OF BURNED AREA. J. Geophys. Res. Biogeosci. 118, 317–328. https://doi.org/10.1002/jgrg.20042 (2013).
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720. https://doi.org/10.5194/essd-9-697-2017 (2017).
Loehman, R. A., Reinhardt, E. & Riley, K. L. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees-a cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. For. Ecol. Manag. 317, 9–19. https://doi.org/10.1016/j.foreco.2013.04.014 (2014).
Landry, J.-S. & Matthews, H. D. Non-deforestation fire vs. fossil fuel combustion: the source of CO(_{{2}}) emissions affects the global carbon cycle and climate responses. Biogeosciences 13, 2137–2149. https://doi.org/10.5194/bg-13-2137-2016 (2016).
Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284. https://doi.org/10.1126/science.11638860 (2016).
Langmann, B., Duncan, B., Textor, C., Trentmann, J. & van der Werf, G. R. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 43, 107–116. https://doi.org/10.1126/science.11638861 (2009).
Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. For. Ecol. Manag. 317, 51–60. https://doi.org/10.1016/j.foreco.2013.05.045 (2014).
Veraverbeke, S., Verstraeten, W. W., Lhermitte, S., Van De Kerchove, R. & Goossens, R. Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire – burn severity using multitemporal MODIS imagery. Int. J. Wildl. Fire 21, 243. https://doi.org/10.1071/WF10075 (2012).
Bowman, D. M. J. S., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes: Correspondence. Glob. Ecol. Biogeogr. 23, 821–824. https://doi.org/10.1126/science.11638864 (2014).
Harris, R. M. B., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. J. S. Climate-vegetation-fire interactions and feedbacks: Trivial detail or major barrier to projecting the future of the Earth system?: Climate-vegetation-fire interactions and feedbacks. Wiley Interdiscip. Rev. Clim. Change 7, 910–931. https://doi.org/10.1002/wcc.428 (2016).
Bradstock, R. A. A biogeographic model of fire regimes in Australia: Current and future implications: A biogeographic model of fire in Australia. Glob. Ecol. Biogeogr. 19, 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x (2010).
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362. https://doi.org/10.1126/science.aal4108 (2017).
Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. 107, 19167–19170. https://doi.org/10.1073/pnas.1003669107 (2010).
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS One 4, e5102 (2009).
Pausas, J. G. & Keeley, J. E. Abrupt climate-independent fire regime changes. Ecosystems 17, 1109–1120. https://doi.org/10.1007/s10021-014-9773-5 (2014).
Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship: Fire and productivity. Glob. Ecol. Biogeogr. 22, 728–736. https://doi.org/10.1016/s0031-0182(00)00192-90 (2013).
Mondal, N. & Sukumar, R. Fires in seasonally dry tropical forest: Testing the varying constraints hypothesis across a regional rainfall gradient. PLoS One 11, e0159691. https://doi.org/10.1371/journal.pone.0159691 (2016).
Foley, J. A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 10, 603–628. https://doi.org/10.1029/96gb02692 (1996).
Thonicke, K., Venevsky, S., Sitch, S. & Cramer, W. The role of fire disturbance for global vegetation dynamics: Coupling fire into a dynamic global vegetation model. Glob. Ecol. Biogeogr. 10, 661–677. https://doi.org/10.1046/j.1466-822x.2001.00175.x (2001).
Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991. https://doi.org/10.1016/s0031-0182(00)00192-94 (2010).
Rabin, S. S. et al. The fire modeling intercomparison project (FireMIP), phase 1: Experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197. https://doi.org/10.5194/gmd-10-1175-2017 (2017).
Li, F., Zeng, X. & Levis, S. A process-based fire parameterization of intermediate complexity in a dynamic global vegetation model. Biogeosciences 9, 2761–2780. https://doi.org/10.1016/s0031-0182(00)00192-96 (2012).
Li, F., Levis, S. & Ward, D. Quantifying the role of fire in the earth system-part 1: Improved global fire modeling in the community earth system model (cesm1). Biogeosciences 10, 2293 (2013).
Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318. https://doi.org/10.5194/gmd-13-3299-2020 (2020).
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537. https://doi.org/10.1038/ncomms8537 (2015).
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 24, 5164–5175. https://doi.org/10.1016/s0031-0182(00)00192-98 (2018).
Archibald, S., Roy, D. P., van Wilgen, B. W. & Scholes, R. J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 15, 613–630. https://doi.org/10.1111/j.1365-2486.2008.01754.x (2009).
Aldersley, A., Murray, S. J. & Cornell, S. E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 409, 3472–3481. https://doi.org/10.1016/s0031-0182(00)00192-99 (2011).
Yang, L., Dawson, C. W., Brown, M. R. & Gell, M. Neural network and GA approaches for dwelling fire occurrence prediction. Knowl. Based Syst. 19, 213–219. https://doi.org/10.1016/j.knosys.2005.11.021 (2006).
Dutta, R., Aryal, J., Das, A. & Kirkpatrick, J. B. Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data. Sci. Rep. 3, 3188. https://doi.org/10.1038/srep03188 (2013).
Satir, O., Berberoglu, S. & Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards Risk 7, 1645–1658. https://doi.org/10.1080/19475705.2015.1084541 (2016).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the cru ts3. 10 dataset. Int. J. Climatol. 34, 623–642 (2014).
Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 4, 1147–1167 (2003).
Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176. https://doi.org/10.1073/pnas.10181161083 (2005).
Freire, S. & Pesaresi, M. Ghs population grid, derived from gpw4, multitemporal (1975, 1990, 2000, 2015).European Commission Joint Research Centre (JRC) (2015).
Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).
Friedl, M. A. et al. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182. https://doi.org/10.1073/pnas.10181161084 (2010).
Channan, S., Collins, K. & Emanuel, W. Global Mosaics of the Standard Modis Land Cover Type Data Vol. 30 (University of Maryland and the Pacific Northwest National Laboratory, College Park, 2014).
Lay, E. H. et al. Wwll global lightning detection system: Regional validation study in brazil. Geophys. Res. Lett. 31, 20 (2004).
Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in north American boreal forests. Nat. Clim. Change 7, 529–534 (2017).
Chen, Y. et al. A pan-tropical cascade of fire driven by el niño/southern oscillation. Nat. Clim. Change 7, 906. https://doi.org/10.1038/s41558-017-0014-8 (2017).
Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of amazon deforestation carbon emissions. Nat. Commun. 9, 536. https://doi.org/10.1038/s41467-017-02771-y (2018).
Yin, Y. et al. Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño: FIRE CARBON EMISSIONS IN EQUATORIAL ASIA. Geophys. Res. Lett. 43, 10472–10479. https://doi.org/10.1073/pnas.10181161087 (2016).
Verdon, D. C., Kiem, A. S. & Franks, S. W. Multi-decadal variability of forest fire risk-eastern Australia. Int. J. Wildl. Fire 13, 165–171. https://doi.org/10.1071/WF03034 (2004).
Mariani, M., Fletcher, M.-S., Holz, A. & Nyman, P. Enso controls interannual fire activity in southeast Australia: Enso and fire activity in SE Australia. Geophys. Res. Lett. 43, 10891–10900. https://doi.org/10.1002/2016GL070572 (2016).
Li, L.-M., Song, W.-G., Ma, J. & Satoh, K. Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk. Int. J. Wildl. Fire 18, 640–647. https://doi.org/10.1071/WF07136 (2009).
Vasilakos, C., Kalabokidis, K., Hatzopoulos, J. & Matsinos, I. Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Nat. Hazards 50, 125–143. https://doi.org/10.1071/wf081871 (2009).
Whitman, E., Parisien, M.-A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 18796. https://doi.org/10.1038/s41598-019-55036-7 (2019).
Hawbaker, T. J. et al. Human and biophysical influences on fire occurrence in the united states. Ecol. Appl. 23, 565–582 (2013).
Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058. https://doi.org/10.1038/s41559-016-0058 (2017).
Andela, N. & van der Werf, G. R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Change 4, 791–795. https://doi.org/10.1038/nclimate2313 (2014).
Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Changehttps://doi.org/10.1038/s41558-020-00920-8 (2020).
Zubkova, M., Boschetti, L., Abatzoglou, J. T. & Giglio, L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys. Res. Lett. 46, 7643–7653. https://doi.org/10.1029/2019GL083469 (2019).
Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).
Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69. https://doi.org/10.1016/j.gloplacha.2016.12.017 (2017).
Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735. https://doi.org/10.1071/wf081877 (2010).
Archibald, S. et al. Biological and geophysical feedbacks with fire in the earth system. Environ. Res. Lett. 13, 033003. https://doi.org/10.1071/wf081878 (2018).
Ponomarev, E., Kharuk, V. & Ranson, K. Wildfires dynamics in Siberian larch forests. Forests 7, 125. https://doi.org/10.3390/f7060125 (2016).
van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. J. Climate controls on the variability of fires in the tropics and subtropics: Climate controls on fires. Glob. Biogeochem. Cycleshttps://doi.org/10.1029/2007GB003122 (2008).
Source: Ecology - nature.com