in

Intraspecific differences in the invasion success of the Argentine ant Linepithema humile Mayr are associated with diet breadth

  • 1.

    Abril, S. & Gómez, C. Aggressive behaviour of the two European Argentine ant supercolonies (Hymenoptera: Formicidae) towards displaced native ant species of the northeastern Iberian Peninsula. Myrmecol. News 14, 99–106 (2010).

    Google Scholar 

  • 2.

    Blight, O. et al. Differences in behavioural traits among native and introduced colonies of an invasive ant. Biol. Invasions 19, 1389–1398 (2017).

    Article  Google Scholar 

  • 3.

    Jun, G., Wei, D., Qiong, W. & Hong-liang, L. Thermal tolerance for two cohorts of a native and an invasive freshwater turtle species. Acta Herpetol. 13, 83–88 (2018).

    Google Scholar 

  • 4.

    Jackson, M. C. & Britton, J. R. Divergence in the trophic niche of sympatric freshwater invaders. Biol. Invasions 16, 1095–1103 (2014).

    Article  Google Scholar 

  • 5.

    Pettitt-Wade, H., Wellband, K. W., Heath, D. D. & Fisk, A. T. Niche plasticity in invasive fishes in the Great Lakes. Biol. Invasions 17, 2565–2580 (2015).

    Article  Google Scholar 

  • 6.

    Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55 (2010).

    Article  Google Scholar 

  • 7.

    Cadotte, M. W., Murray, B. R. & Lovett-Doust, J. Ecological patterns and biological invasions: Using regional species inventories in macroecology. Biol. Invasions 8, 809–821 (2006).

    Article  Google Scholar 

  • 8.

    Pyšek, P. & Richardson, D. M. Traits associated with invasiveness in alien plants: Where do we stand?. Biol. Invasions 193, 97–125 (2007).

    Article  Google Scholar 

  • 9.

    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman Group, London, 1996).

    Google Scholar 

  • 10.

    Lowe, S., Browne, S., Boudjelas, M. S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From The Global Invasive Species Database. Encyclopedia of Biological Invasions vol. 12 (Invasive Species Specialist Group, 2000).

  • 11.

    Suarez, A. V., Holway, D. A. & Case, T. J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: Insights from Argentine ants. Proc. Natl. Acad. Sci. U.S.A. 98, 1095–1100 (2001).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Roura-Pascual, N. et al. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc. Natl. Acad. Sci. U.S.A. 108, 220–225 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 13.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).

    Google Scholar 

  • 14.

    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).

    Article  Google Scholar 

  • 15.

    Suarez, A. V., Tsutsui, N. D., Holway, D. A. & Case, T. J. Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol. Invasions 1, 43–53 (1999).

    Article  Google Scholar 

  • 16.

    Giraud, T., Pedersen, J. S. & Keller, L. Evolution of supercolonies: The Argentine ants of southern Europe. Proc. Natl. Acad. Sci. U.S.A. 99, 6075–6079 (2002).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Pedersen, J. S., Krieger, M. J. B., Vogel, V., Giraud, T. & Keller, L. Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60, 782–791 (2006).

    PubMed  Article  Google Scholar 

  • 18.

    Inoue, M. N. et al. Recent range expansion of the Argentine ant in Japan. Divers. Distrib. 19, 29–37 (2013).

    Article  Google Scholar 

  • 19.

    Sunamura, E. et al. Four mutually incompatible Argentine ant supercolonies in Japan: inferring invasion history of introduced Argentine ants from their social structure. Biol. Invasions 11, 2329–2339 (2009).

    Article  Google Scholar 

  • 20.

    Sunamura, E. et al. Intercontinental union of Argentine ants: behavioral relationships among introduced populations in Europe, North America, and Asia. Insectes Soc. 56, 143–147 (2009).

    Article  Google Scholar 

  • 21.

    Thomas, M. L., Payne-Makrisâ, C. M., Suarez, A. V., Tsutsui, N. D. & Holway, D. A. When supercolonies collide: Territorial aggression in an invasive and unicolonial social insect. Mol. Ecol. 15, 4303–4315 (2006).

    PubMed  Article  Google Scholar 

  • 22.

    Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. 97, 5948–5953 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Corin, S. E., Abbott, K. L., Ritchie, P. A. & Lester, P. J. Large scale unicoloniality: The population and colony structure of the invasive Argentine ant (Linepithema humile) in New Zealand. Insectes Soc. 54, 275–282 (2007).

    Article  Google Scholar 

  • 24.

    Hayasaka, D. et al. Different acute toxicity of fipronil baits on invasive Linepithema humile supercolonies and some non-target ground arthropods. Ecotoxicology 24, 1221–1228 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019).

  • 26.

    Rudnick, D. & Resh, V. Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshw. Biol. 50, 1323–1336 (2005).

    Article  Google Scholar 

  • 27.

    Jackson, M. C. et al. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE 7, 1–12 (2012).

    Google Scholar 

  • 28.

    Sunamura, E., Nishisue, K., Terayama, M. & Tatsuki, S. Invasion of four Argentine ant supercolonies into Kobe Port, Japan: Their distributions and effects on indigenous ants (Hymenoptera: Formicidae). Sociobiology 50, 659–674 (2007).

    Google Scholar 

  • 29.

    Nakahama, N. et al. Identification of the mitochondrial DNA haplotype of an invasive Linepithema humile (Mayr, 1868) (Hymenoptera: Formicidae) population of a new location in Japan for its effective eradication. Entomol. News 128, 217–225 (2019).

    Article  Google Scholar 

  • 30.

    Sato, K., Sakamoto, H., Hirata, M., Ozaki, M. & Higashi, S. Household and Structural Insects Relationship Among Establishment Durations , Kin Relatedness , Aggressiveness , and Distance Between Populations of Eight Invasive Argentine Ant (Hymenoptera : Formicidae) Supercolonies in Japan. 110, 1676–1684 (2017).

  • 31.

    Layman, C. A., Arrington, D. A., Montana, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecol. Soc. Am. 89, 2358–2359 (2007).

    Google Scholar 

  • 32.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Article  Google Scholar 

  • 33.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article  Google Scholar 

  • 34.

    VanderZanden, M. J. & Rasmussen, J. B. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80, 1395–1404 (1999).

    Article  Google Scholar 

  • 35.

    Cerling, T. E., Harris, J. M. & Leakey, M. G. Browsing and grazing in elephants: The isotope record of modern and fossil proboscideans. Oecologia 120, 364–374 (1999).

    ADS  PubMed  Article  Google Scholar 

  • 36.

    Tipple, B. J. & Pagani, M. The early origins of terrestrial C4 photosynthesis. Annual Review of Earth and Planetary Sciences (2007).

  • 37.

    Takeda, T., Ueno, O., Samejima, M. & Ohtani, T. An investigation for the occurrence of C4 photosynthesis in the Cyperaceae from Australia. Bot. Mag. Tokyo 98, 393–411 (1985).

    Article  Google Scholar 

  • 38.

    Hyodo, F., Kohzu, A. & Tayasu, I. Linking aboveground and belowground food webs through carbon and nitrogen stable isotope analyses. Ecol. Res. 25, 745–756 (2010).

    CAS  Article  Google Scholar 

  • 39.

    Hishi, T., Hyodo, F., Saitoh, S. & Takeda, H. The feeding habits of collembola along decomposition gradients using stable carbon and nitrogen isotope analyses. Soil Biol. Biochem. 39, 1820–1823 (2007).

    CAS  Article  Google Scholar 

  • 40.

    Suehiro, W. et al. Radiocarbon analysis reveals expanded diet breadth associates with the invasion of a predatory ant. Sci. Rep. 7, 1–10 (2017).

    CAS  Article  Google Scholar 

  • 41.

    Tillberg, C. V., Holway, D. A., LeBrun, E. G. & Suarez, A. V. Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proc. Natl. Acad. Sci. U. S. Am. 104, 20856–20861 (2007).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Roeder, K. A. & Kaspari, M. From cryptic herbivore to predator: Stable isotopes reveal consistent variability in trophic levels in an ant population. Ecology 98, 297–303 (2017).

    PubMed  Article  Google Scholar 

  • 43.

    Post, D. M. et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).

    ADS  PubMed  Article  Google Scholar 

  • 44.

    Tayasu, I., Hirasawa, R., Ogawa, N. O., Ohkouchi, N. & Yamada, K. New organic reference materials for carbon- and nitrogen-stable isotope ratio measurements provided by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology. Limnology 12, 261–266 (2011).

    CAS  Article  Google Scholar 

  • 45.

    Pettitt-Wade, H., Wellband, K. W. & Fisk, A. T. Inconsistency for the niche breadth invasion success hypothesis in aquatic invertebrates. Limnol. Oceanogr. 63, 144–159 (2018).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    Scientists as engaged citizens