in

Large-scale shift in the structure of a kelp forest ecosystem co-occurs with an epizootic and marine heatwave

  • 1.

    Bindoff, N. L. et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) 447–588 (IPCC, 2019).

  • 2.

    Collins, M. et al. Extremes, Abrupt Changes and Managing Risks. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) 589–656 (IPCC, 2019).

  • 3.

    Hoegh-Guldberg et al. The Ocean. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Barros, V. R. et al.) 1655–1731 (Cambridge University Press, 2014).

  • 4.

    Laufkotter, C., Zscheischler, J. & Frolicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 1–13 (2019).

    CAS  Article  Google Scholar 

  • 6.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Carr, M. & Kearns, E. J. Production regimes in four Eastern Boundary Current systems. Deep. Res. Part II 50, 3199–3221 (2003).

    CAS  Article  Google Scholar 

  • 8.

    Castro, C. G. et al. Introduction to ‘ The 1997 – 8 El Nino Atlas of oceanographic conditions along the west coast of North America (23°N – 50°N)’. Prog. Oceanogr. 54, 503–511 (2002).

    Article  Google Scholar 

  • 9.

    Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 1–15 (2019).

    Article  Google Scholar 

  • 10.

    Nohaïc, M. L. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).

    Article  CAS  Google Scholar 

  • 11.

    Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. N. Phytol. 225, 1447–1454 (2020).

    Article  Google Scholar 

  • 12.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).

    Article  Google Scholar 

  • 13.

    Schiel, D. R. & Foster, M. S. The Biology and Ecology of Giant Kelp Forests (University of California Press, 2015).

  • 14.

    Wernberg, T., Krumhansl, K., Filbee-dexter, K. & Pedersen, M. F. in World Seas: An Environmental Evaluation (ed. Sheppard, C.) 57–78 (Elsevier Ltd., 2019).

  • 15.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3, 78–82 (2012).

    Article  Google Scholar 

  • 16.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 1–12 (2017).

    Article  Google Scholar 

  • 18.

    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 1–10 (2019).

    Article  Google Scholar 

  • 19.

    Cavanaugh, K. C. et al. Spatial variability in the resistance and resilience of giant kelp in Southern and Baja California to a multiyear heatwave. Front. Mar. Sci. 6, 1–14 (2019).

    Article  Google Scholar 

  • 20.

    Arafeh-dalmau, N., Montaño-moctezuma, G., Martínez, J. A. & Smale, D. A. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 1–18 (2019).

    Article  Google Scholar 

  • 21.

    Filbee-Dexter, K., Feehan, C. J. & Scheibling, R. E. Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser. 543, 141–152 (2016).

  • 22.

    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Sanford, E., Sones, J. L., García-reyes, M., Goddard, J. H. R. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014- 2016 marine heatwaves. Sci. Reportscientific Rep. 9, 1–14 (2019).

    Article  CAS  Google Scholar 

  • 24.

    Beas-Luna, R. et al. Geographic variation in responses of kelp forest communities of the California current to recent climatic changes. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15273 (2020).

  • 25.

    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68, 64–76 (2018).

    Article  Google Scholar 

  • 26.

    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).

    Article  Google Scholar 

  • 27.

    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345 (2009).

  • 28.

    Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–477 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Hamilton, S. L. & Caselle, J. E. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests. Proc. R. Soc. B 282, 1–10 (2014).

  • 30.

    Jacox, M. G. et al. Forcing of multiyear extreme ocean temperatures that impacted California current living marine resources in 2016. Bull. Am. Meteorol. Soc. 99, 27–33 (2018).

    Article  Google Scholar 

  • 31.

    Montecino-Latorre, D. et al. Devastating transboundary impacts of sea star wasting disease on subtidal asteroids. PLoS ONE 11, 1–21 (2016).

    Article  CAS  Google Scholar 

  • 32.

    Eisaguirre, J. M., Davis, K., Carlson, P. M., Gaines, S. D. & Caselle, J. E. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 101, 1–11 (2020).

    Article  Google Scholar 

  • 33.

    Harrold, C. & Reed, D. C. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66, 1160–1169 (1985).

    Article  Google Scholar 

  • 34.

    Cowen, R. K. The effect of sheephead (Semicossyphus pulcher) predation on red sea urchin (Strongylocentrotus franciscanus) populations: an experimental analysis. Oecologia 58, 249–255 (1983).

    PubMed  Article  Google Scholar 

  • 35.

    Burt, J. M. et al. Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts. Proc. R. Soc. B 285, 1–9 (2018).

  • 36.

    Springer, Y. P., Hays, C., Carr, M. H. & Mackey, M. R. Toward ecosystem-based management of marine macroalgae-the bull kelp, Nereocystis luetkeana. Oceanogr. Mar. Biol. Annu. Rev. 48, 1–42 (2010).

    Google Scholar 

  • 37.

    Springer, Y., Hays, C., Carr, M., Mackey, M. & Bloeser, J. Ecology and management of the bull kelp, Nereocystis luetkeana: a synthesis with recommendations for future research. Vol. 48, 1–45 (Lenfest Ocean Program at The Pew Charitable Trusts, 2006).

  • 38.

    Bell, T. W., Allen, J. G., Cavanaugh, K. C. & Siegel, D. A. Three decades of variability in California’s giant kelp forests from the Landsat satellites. Remote Sens. Environ. 238, 110811 (2020).

  • 39.

    Pfister, C. A., Berry, H. D. & Mumford, T. The dynamics of Kelp Forests in the Northeast Pacific Ocean and the relationship with environmental drivers. J. Ecol. https://doi.org/10.1111/1365-2745.12908 (2017).

  • 40.

    Griggs, G. B. & Hein, J. R. Sources, dispersal, and clay mineral composition of fine-grained sediment off Central and Northern California. J. Geol. 88, 541–566 (1979).

    Article  Google Scholar 

  • 41.

    Harvell, C. D., Caldwell, J. M., Burt, J. M., Bosley, K. & Keller, A. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5, 1–9 (2019).

    Article  Google Scholar 

  • 42.

    Okamoto, D. K., Schroeter, S. C. & Reed, D. C. Effects of ocean climate on spatiotemporal variation in sea urchin settlement and recruitment. Limnol. Oceanogr. https://doi.org/10.1002/lno.11440 (2020).

  • 43.

    Estes, J. A., Burdin, A. & Doak, D. F. Sea otters, kelp forests, and the extinction of Steller’s sea cow. Proc. Natl Acad. Sci. USA 113, 880–885 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Ebert, T. A., Schroeter, S. C., Dixon, J. D. & Kalvass, P. Settlement patterns of red and purple sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in California, USA. Mar. Ecol. Prog. Ser. 111, 41–52 (1994).

    Article  Google Scholar 

  • 46.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–366 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 47.

    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).

    Article  Google Scholar 

  • 48.

    Smith, J. G. et al. Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade. Proc. Natl. Acad. Sci. USA 118, 202012493 (2020). https://doi.org/10.1073/pnas.2012493118.

  • 49.

    Eurich, J. G., Selden, R. L. & Warner, R. R. California spiny lobster preference for urchins from kelp forests: implications for urchin barren persistence. Mar. Ecol. Prog. Ser. 498, 217–225 (2014).

    Article  Google Scholar 

  • 50.

    Graham, M. H. Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7, 341–357 (2004).

    Article  Google Scholar 

  • 51.

    Babcock, R. C. et al. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc. Natl Acad. Sci. USA 107, 18256–18261 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Hewson, I., Bistolas, K. S. I., Cardé, E. M. Q. & Button, J. B. Investigating the complex association between viral ecology, environment, and Northeast Pacific Sea Star Wasting. Front. Mar. Sci. 5, 1–14 (2018).

  • 53.

    Pearse, J. S. & Hines, A. H. Expansion of a central California kelp forest following the mass mortality of sea urchins. Mar. Biol. 51, 83–91 (1979).

  • 54.

    Ebeling, A. W., Laur, D. R., Rowley, R. J. & Barbara, S. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 294, 287–294 (1985).

    Article  Google Scholar 

  • 55.

    Martínez, B. et al. Distribution models predict large contractions of forming seaweeds in response to ocean warming. Divers. Distrib. 24, 1350–1366 (2018).

    Article  Google Scholar 

  • 56.

    DeYoung, B. et al. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol. Evol. 23, 402–409 (2008).

    PubMed  Article  Google Scholar 

  • 57.

    Crépin, A., Biggs, R., Polasky, S., Troell, M. & Zeeuw, A. De. Regime shifts and management. Ecol. Econ. 84, 15–22 (2012).

    Article  Google Scholar 

  • 58.

    Roberts, D. A. et al. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 65, 267–279 (1998).

    Article  Google Scholar 

  • 59.

    Cavanaugh, K. C., Siegel, D. A., Reed, D. C. & Dennison, P. E. Environmental controls of giant-kelp biomass in the Santa Barbara Channel, California. Mar. Ecol. Prog. Ser. 429, 1–17 (2011).

    Article  Google Scholar 

  • 60.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article  Google Scholar 

  • 61.

    García-Reyes, M., Largier, J. L. & Sydeman, W. J. Progress in Oceanography Synoptic-scale upwelling indices and predictions of phyto- and zooplankton populations. Prog. Oceanogr. 120, 177–188 (2014).

    Article  Google Scholar 

  • 62.

    McHugh, T., Abbott, D. & Freiwald, J. Phase shift from kelp forest to urchin barren along California’s North Coast. (Western Society of Naturalists, 2018).

  • 63.

    Rogers-Bennett, L., Kashiwada, J. V., Taniguchi, I. K., Kawana, S. K. & Catton, C. A. Using density-based fishery management strategies to respond to mass mortality events. J. Shellfish Res. 38, 1–11 (2019).

    Article  Google Scholar 

  • 64.

    Carrascal, L. M. & Galva, I. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).

    Article  Google Scholar 

  • 65.

    Vadas, R. L. Ecological implications of culture studies on nereocystis luetkeana. J. Phycol. 8, 196–203 (1972).

    Google Scholar 

  • 66.

    Finger, D. J. I., McPherson, M. L., Houskeeper, H. F. & Kudela, R. M. Mapping bull kelp canopy in northern California using Landsat to enable long-term monitoring. Remote Sens. Environ. 254, 112243 (2021).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    How to reduce the environmental impact of your next virtual meeting

    Startup empowers women to improve access to safe drinking water