in

Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations

  • 1.

    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Mittell, E. A., Nakagawa, S. & Hadfield, J. D. Are molecular markers useful predictors of adaptive potential? Ecol. Lett. 18, 772–778 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Vilas, A., Pérez-Figueroa, A., Quesada, H. & Caballero, A. Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol. Ecol. 24, 4419–4432 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 (2018).

    Article  Google Scholar 

  • 10.

    Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Attard, C. R. M. et al. Low genetic diversity in pygmy blue whales is due to climate-induced diversification rather than anthropogenic impacts. Biol. Lett. 11, 20141037 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Ma, G., Rudolf, V. H. W. & Ma, C. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Chang. Biol. 21, 1794–1808 (2015).

    ADS  PubMed  Article  Google Scholar 

  • 13.

    Johnson, D. W., Freiwald, J. & Bernardi, G. Genetic diversity affects the strength of population regulation in a marine fish. Ecology 97, 627–639 (2016).

    CAS  PubMed  Google Scholar 

  • 14.

    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).

    Article  Google Scholar 

  • 15.

    Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503 (2015).

    Article  Google Scholar 

  • 16.

    Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Bruford, M. W., Davies, N., Dulloo, M. E., Faith, D. P. & Walters, M. In The GEO Handbook on Biodiversity Observation Networks 107–128 (Springer International Publishing, 2017).

  • 18.

    Hamrick, J. L. & Godt, M. J. W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. B Biol. Sci. 351, 1291–1298 (1996).

    ADS  Article  Google Scholar 

  • 19.

    Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).

    PubMed  Article  Google Scholar 

  • 20.

    Gelmi-Candusso, T. A., Heymann, E. W. & Heer, K. Effects of zoochory on the spatial genetic structure of plant populations. Mol. Ecol. 26, 5896–5910 (2017).

    PubMed  Article  Google Scholar 

  • 21.

    Vranckx, G., Jacquemyn, H., Muys, B. & Honnay, O. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv. Biol. 26, 228–237 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Eo, S. H., Doyle, J. M. & DeWoody, J. A. Genetic diversity in birds is associated with body mass and habitat type. J. Zool. 283, 220–226 (2011).

    Article  Google Scholar 

  • 23.

    Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2012).

    Article  Google Scholar 

  • 24.

    Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Doyle, J. M., Hacking, C. C., Willoughby, J. R., Sundaram, M. & DeWoody, J. A. Mammalian genetic diversity as a function of habitat, body size, trophic class, and conservation status. J. Mammal. 96, 564–572 (2015).

    Article  Google Scholar 

  • 26.

    Miller, J. E. D., Damschen, E. I., Harrison, S. P. & Grace, J. B. Landscape structure affects specialists but not generalists in naturally fragmented grasslands. Ecology 96, 3323–3331 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Dalongeville, A., Andrello, M., Mouillot, D., Albouy, C. & Manel, S. Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes. J. Biogeogr. 43, 845–857 (2016).

    Article  Google Scholar 

  • 28.

    Mitton, J. B. & Lewis, W. M. Relationships between genetic variability and life history features of bony fishes. Evolution 43, 1712–1723 (1989).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Vachon, F., Whitehead, H. & Frasier, T. R. What factors shape genetic diversity in cetaceans? Ecol. Evol. 8, 1554–1572 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Jackson, J. M. et al. Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Mol. Ecol. 27, 2926–2942 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Yannic, G. et al. Genetic diversity in caribou linked to past and future climate change. Nat. Clim. Chang. 4, 132–137 (2014).

    ADS  Article  Google Scholar 

  • 32.

    Lira-Noriega, A. & Manthey, J. D. Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68, 1082–1093 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Duncan, S. I., Crespi, E. J., Mattheus, N. M. & Rissler, L. J. History matters more when explaining genetic diversity within the context of the core-periphery hypothesis. Mol. Ecol. 24, 4323–4336 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Garner, T. W. J., Pearman, P. B. & Angelone, S. Genetic diversity across a vertebrate species’ range: a test of the central-peripheral hypothesis. Mol. Ecol. 13, 1047–1053 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Munwez, I. et al. The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol. Ecol. 19, 2675–2689 (2010).

    Article  CAS  Google Scholar 

  • 36.

    Jones, M. E., Paetkau, D., Geffen, E. & Moritz, C. Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol. Ecol. 13, 2197–2209 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    White, T. A. & Searle, J. B. Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Mol. Ecol. 16, 2005–2016 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Whitlock, R. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. J. Ecol. 102, 857–872 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    García-Verdugo, C. et al. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates. Mol. Ecol. 24, 726–741 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 41.

    Patiño, J. et al. A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. J. Biogeogr. 44, 963–983 (2017).

    Article  Google Scholar 

  • 42.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Sci 353, 1532–1535 (2016).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Hirao, A. S. et al. Genetic diversity within populations of an arctic-alpine species declines with decreasing latitude across the Northern Hemisphere. J. Biogeogr. 44, 2740–2751 (2017).

    Article  Google Scholar 

  • 46.

    Kim, M.-S., Richardson, B. A., McDonald, G. I. & Klopfenstein, N. B. Genetic diversity and structure of western white pine (Pinus monticola) in North America: a baseline study for conservation, restoration, and addressing impacts of climate change. Tree Genetics & Genomes, 7. PLoS Genet. 1, 11–21 (2011).

    Google Scholar 

  • 47.

    Adams, R. I. & Hadly, E. A. Genetic diversity within vertebrate species is greater at lower latitudes. Evol. Ecol. 27, 133–143 (2013).

    Article  Google Scholar 

  • 48.

    Gratton, P. et al. Which latitudinal gradients for genetic diversity? Trends Ecol. Evol. 32, 724–726 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Lumibao, C. Y., Hoban, S. M. & McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459–1468 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Schoville, S. D. et al. Adaptive genetic variation on the landscape: methods and cases. Annu. Rev. Ecol. Evol. Syst. 43, 23–43 (2012).

    Article  Google Scholar 

  • 51.

    Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat. Commun. 11, 1–9 (2020).

    ADS  Article  CAS  Google Scholar 

  • 52.

    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Browne, L., Ottewell, K., Sork, V. L. & Karubian, J. The relative contributions of seed and pollen dispersal to gene flow and genetic diversity in seedlings of a tropical palm. Mol. Ecol. 27, 3159–3173 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol. Rev. 94, 648–661 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Nybom, H. & Bartish, I. V. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect. Plant Ecol. Evol. Syst. 3, 93–114 (2000).

    Article  Google Scholar 

  • 57.

    Honnay, O. & Jacquemyn, H. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv. Biol. 21, 823–831 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717 (2018).

    ADS  Article  Google Scholar 

  • 60.

    Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).

    Article  Google Scholar 

  • 61.

    Mariette, S., Le Corre, V., Austerlitz, F. & Kremer, A. Sampling within the genome for measuring within-population diversity: trade-offs between markers. Mol. Ecol. 11, 1145–1156 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J. & Sheldon, B. C. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol. Ecol. 18, 2746–2765 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Chang. 10, 244–248 (2020).

    ADS  Article  Google Scholar 

  • 64.

    Storey, J., Bass, A., Dabney, A. & Robinson, D. qvalue: Q-value estimation for false discovery rate control. R package version 2.14.1. https://doi.org/10.1111/ele.12303 (2019).

  • 65.

    Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).

    Article  Google Scholar 

  • 68.

    Kappes, H. & Haase, P. Slow, But Steady: Dispersal of Freshwater Molluscs (Springer, 2012).

  • 69.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    McGlynn, T. P., Weiser, M. D. & Dunn, R. R. More individuals but fewer species: testing the ‘more individuals hypothesis’ in a diverse tropical fauna. Biol. Lett. 6, 490–493 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Binks, R. M., Millar, M. A. & Byrne, M. Not all rare species are the same: contrasting patterns of genetic diversity and population structure in two narrow-range endemic sedges. Biol. J. Linn. Soc. 114, 873–886 (2015).

    Article  Google Scholar 

  • 73.

    Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Cardillo, M. et al. Evolution: multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Mittelbach, G. G. A matter of time for tropical diversity. Nature 550, 51–52 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105–108 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Eziz, A. et al. Drought effect on plant biomass allocation: a meta-analysis. Ecol. Evol. 7, 11002–11010 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Martin, T. E. Age-related mortality explains life history strategies of tropical and temperate songbirds. Science 349, 966–970 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 81.

    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    PubMed  Article  Google Scholar 

  • 83.

    Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).

    Article  Google Scholar 

  • 84.

    Cronk, Q. Plant extinctions take time: many plant species may already be functionally extinct. Science 353, 446–447 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 85.

    Aguilar, R. et al. Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecol. Lett. 22, 1163–1173 (2019).

    PubMed  Article  Google Scholar 

  • 86.

    González, A. V., Gómez‐Silva, V., Ramírez, M. J. & Fontúrbel, F. E. Meta‐analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv. Biol. 34, 711–720 (2019).

    PubMed  Article  Google Scholar 

  • 87.

    Wood, J. L. A., Yates, M. C. & Fraser, D. J. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol. Appl. 9, 640–657 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Yates, M. C., Bowles, E. & Fraser, D. J. Small population size and low genomic diversity have no effect on fitness in experimental translocations of a wild fish. Proc. R. Soc. B Biol. Sci. 286, 20191989 (2019).

    CAS  Article  Google Scholar 

  • 89.

    De Kort, H., Mergeay, J., Jacquemyn, H. & Honnay, O. Transatlantic invasion routes and adaptive potential in North American populations of the invasive glossy buckthorn, Frangula alnus. Ann. Bot. 118, 1089–1099 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Jordan, R., Hoffmann, A. A., Dillon, S. K. & Prober, S. M. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change. Mol. Ecol. 26, 6002–6020 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Wogan, G. O. U., Yuan, M. L., Mahler, D. L. & Wang, I. J. Genome-wide epigenetic isolation by environment in a widespread Anolis lizard. Mol. Ecol. 29, 40–55 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 92.

    Schmid, M. W. et al. Contribution of epigenetic variation to adaptation in Arabidopsis. Nat. Commun. 9, 4446 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 93.

    Rey, O. et al. Linking epigenetics and biological conservation: towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).

    Article  Google Scholar 

  • 94.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article  Google Scholar 

  • 95.

    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evolution 3, 539–551 (2019).

    Article  Google Scholar 

  • 96.

    Crandall, E. D., Taffel, J. R. & Barber, P. H. High gene flow due to pelagic larval dispersal among South Pacific archipelagos in two amphidromous gastropods (Neritomorpha: Neritidae). Heredity 104, 563–572 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 97.

    Faurby, S. & Barber, P. H. Theoretical limits to the correlation between pelagic larval duration and population genetic structure. Mol. Ecol. 21, 3419–3432 (2012).

    PubMed  Article  Google Scholar 

  • 98.

    Álvarez-Noriega, M. et al. Global biogeography of marine dispersal potential. Nat. Ecol. Evol. 4, 1196–1203, https://doi.org/10.1038/s41559-020-1238-y (2020).

    Article  PubMed  Google Scholar 

  • 99.

    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117, 654–664 (2008).

    Article  Google Scholar 

  • 100.

    Willoughby, J. R. et al. Biome and migratory behaviour significantly influence vertebrate genetic diversity. Biol. J. Linn. Soc. 121, 446–457 (2017).

    Article  Google Scholar 

  • 101.

    Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99, 2058–2066 (2018).

    PubMed  Article  Google Scholar 

  • 102.

    Tellier, A. Persistent seed banking as eco‐evolutionary determinant of plant nucleotide diversity: novel population genetics insights. N. Phytol. 221, 725–730 (2019).

    CAS  Article  Google Scholar 

  • 103.

    Ayre, D., O’Brien, E., Ottewell, K. & Whelan, R. The accumulation of genetic diversity within a canopy-stored seed bank. Mol. Ecol. 19, 2640–2650 (2010).

    PubMed  Article  Google Scholar 

  • 104.

    Campbell, D. R., Brody, A. K., Price, M. V., Waser, N. M. & Aldridge, G. Is plant fitness proportional to seed set? An experiment and a spatial model. Am. Nat. 190, 818–827 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 105.

    Angeloni, F., Ouborg, N. J. & Leimu, R. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol. Conserv. 144, 35–43 (2011).

    Article  Google Scholar 

  • 106.

    Nei, M., Maruyama, T. & Chakraborty, R. The Bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).

    PubMed  Article  Google Scholar 

  • 107.

    Kimura, M. The neutral theory of molecular evolution (Cambridge University Press: Cambridge [Cambridgeshire], 1983).

  • 108.

    Nagylaki, T. The effective size of a subdivided population. Genetics 149, 1599–1604 (1997).

    Google Scholar 

  • 109.

    Poirier, M.-A., Coltman, D. W., Pelletier, F., Jorgenson, J. & Festa-Bianchet, M. Genetic decline, restoration and rescue of an isolated ungulate population. Evol. Appl. 12, 1318–1328 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 110.

    Dures, S. G. et al. A century of decline: loss of genetic diversity in a southern African lion-conservation stronghold. Divers. Distrib. 25, 870–879 (2019).

    Article  Google Scholar 

  • 111.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Burnham, K. P. & Anderson, D. R. In Sociological Methods & Research 33, (Sage PublicationsSage CA, Thousand Oaks, 2002).


  • Source: Ecology - nature.com

    How to get more electric cars on the road

    Nutrients exported from upland stream water enlarge perennial biomass crops