Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).
UN FAO Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? (FAO Interdepartmental Working Group, 2016).
Douglas, I. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 185–197 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-809665-9.09206-5
Hassan, R., Scholes, R. & Ash, N. Ecosystems and Human Well-Being: Current State and Trends (Island Press, 2005).
Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).
Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).
Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).
Google Scholar
D’Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27, 633–647 (2007).
Laurance, W. F. et al. Ecosystem decay of amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).
Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).
Take action to stop Amazon burning. Nature 573, 163 (2019)
Karstensen, J., Peters, G. P. & Andrew, R. M. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ. Res. Lett. 8, 024005 (2013).
Godar, J., Tizado, E. J. & Pokorny, B. Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. For. Ecol. Manag. 267, 58–73 (2012).
Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756 (2019).
Google Scholar
de Area Leão Pereira, E. J., de Santana Ribeiro, L. C., da Silva Freitas, L. F. & de Barros Pereira, H. B. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 92, 104491 (2020).
Escobar, H. Deforestation in the Brazilian Amazon is still rising sharply. Science 369, 613 (2020).
Google Scholar
Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).
Jha, S. & Bawa, K. S. Population growth, human development, and deforestation in biodiversity hotspots. Conserv. Biol. 20, 906–912 (2006).
Google Scholar
DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).
Google Scholar
Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).
Google Scholar
Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).
Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
Google Scholar
Saikku, L., Soimakallio, S. & Pingoud, K. Attributing land-use change carbon emissions to exported biomass. Environ. Impact Assess. Rev. 37, 47–54 (2012).
Beckman, J., Sands, R. D., Riddle, A. A., Lee, T. & Walloga, J. M. International Trade and Deforestation: Potential Policy Effects via a Global Economic Model (USDA, 2017); https://ideas.repec.org/p/ags/uersrr/262185.html
Cuypers, D. et al. The Impact of EU Consumption on Deforestation: Comprehensive Analysis of the Impact of EU consumption on Deforestation (European Commission, 2013).
Zhang, Q. et al. Global timber harvest footprints of nations and virtual timber trade flows. J. Clean. Prod. 250, 119503 (2020).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).
Google Scholar
Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).
Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).
Google Scholar
Tropek, R. et al. Comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).
Google Scholar
Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
Forest Fact Book 2017–2018 (Government of Canada Publications, 2017).
Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
Google Scholar
Ericsson, K. & Werner, S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass. Bioenergy 94, 57–65 (2016).
Kennedy, C. & Southwood, T. The number of species of insects associated with British trees: a re-analysis. J. Anim. Ecol. 53, 455–478 (1984).
Braun, A. C. H. et al. Assessing the impact of plantation forestry on plant biodiversity: a comparison of sites in Central Chile and Chilean Patagonia. Glob. Ecol. Conserv. 10, 159–172 (2017).
Kang, D., Wang, X., Li, S. & Li, J. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat. Sci. Rep. 7, 3561 (2017).
Google Scholar
Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).
Google Scholar
Erwin, T. L. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).
Google Scholar
Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).
Bradford, M. & Murphy, H. T. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS ONE 14, e0208377 (2019).
Google Scholar
Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).
Google Scholar
Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).
Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).
Google Scholar
Weinzettel, J., Vačkář, D. & Medková, H. Human footprint in biodiversity hotspots. Front. Ecol. Environ. 16, 447–452 (2018).
Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).
Google Scholar
Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).
Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 102055 (2020).
Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).
Blackman, A., Goff, L. & Rivera Planter, M. Does eco-certification stem tropical deforestation? Forest stewardship council certification in mexico. J. Environ. Econ. Manag. 89, 306–333 (2018).
Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report (NYDF Assessment Partners, 2019).
Meijer, K. S. A comparative analysis of the effectiveness of four supply chain initiatives to reduce deforestation. Trop. Conserv. Sci. 8, 583–597 (2015).
Carvalho, W. D. et al. Deforestation control in the brazilian amazon: a conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect. Ecol. Conserv. 17, 122–130 (2019).
Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202–23208 (2019).
Google Scholar
Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).
Godar, J., Gardner, T. A., Tizado, E. J. & Pacheco, P. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 111, 15591–15596 (2014).
Google Scholar
Alix-Garcia, J. M., Sims, K. R. E. & Yañez-Pagans, P. Only one tree from each seed? Environmental effectiveness and poverty alleviation in Mexico’s payments for ecosystem services program. Am. Econ. J.: Econ. Policy 7, 1–40 (2015).
Alix-Garcia, J. M. et al. Payments for environmental services supported social capital while increasing land management. Proc. Natl Acad. Sci. USA 115, 7016–7021 (2018).
Google Scholar
Börner, J. et al. The effectiveness of payments for environmental services. World Dev. 96, 359–374 (2017).
Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).
Google Scholar
Annual Review 2017 (PEFC, 2017).
Higgins, V. & Richards, C. Framing sustainability: alternative standards schemes for sustainable palm oil and South–South trade. J. Rural Stud. 65, 126–134 (2019).
Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).
Google Scholar
World Countries (ArcGIS, 2020); https://www.arcgis.com/home/item.html?id=d974d9c6bc924ae0a2ffea0a46d71e3d
Hansen, M. et al. Response to comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).
Google Scholar
Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).
Google Scholar
Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 094017 (2016).
Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).
Google Scholar
Yang, Y. et al. Mapping global carbon footprint in China. Nat. Commun. 11, 2237 (2020).
Google Scholar
Sun, Z., Scherer, L., Tukker, A. & Behrens, P. Linking global crop and livestock consumption to local production hotspots. Glob. Food Sec. 25, 100323 (2020).
Global Forest Resource Assessment 2000 FAO Forestry Paper 140 (FAO, 2001).
Sasaki, N. & Putz, F. E. Critical need for new definitions of ‘forest’ and ‘forest degradation’ in global climate change agreements. Conserv. Lett. 2, 226–232 (2009).
Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).
Google Scholar
Lenzen, M. et al. The Global MRIO Lab – charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).
Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).
You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).
Source: Ecology - nature.com