in

Mapping the deforestation footprint of nations reveals growing threat to tropical forests

  • 1.

    Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).

    Google Scholar 

  • 2.

    UN FAO Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? (FAO Interdepartmental Working Group, 2016).

  • 3.

    Douglas, I. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 185–197 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-809665-9.09206-5

  • 4.

    Hassan, R., Scholes, R. & Ash, N. Ecosystems and Human Well-Being: Current State and Trends (Island Press, 2005).

  • 5.

    Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Google Scholar 

  • 6.

    Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).

    Google Scholar 

  • 7.

    Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).

    Google Scholar 

  • 8.

    Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).

    CAS 

    Google Scholar 

  • 9.

    D’Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27, 633–647 (2007).

    Google Scholar 

  • 10.

    Laurance, W. F. et al. Ecosystem decay of amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).

    Google Scholar 

  • 11.

    Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).

    Google Scholar 

  • 12.

    Take action to stop Amazon burning. Nature 573, 163 (2019)

  • 13.

    Karstensen, J., Peters, G. P. & Andrew, R. M. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ. Res. Lett. 8, 024005 (2013).

    Google Scholar 

  • 14.

    Godar, J., Tizado, E. J. & Pokorny, B. Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. For. Ecol. Manag. 267, 58–73 (2012).

    Google Scholar 

  • 15.

    Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    de Area Leão Pereira, E. J., de Santana Ribeiro, L. C., da Silva Freitas, L. F. & de Barros Pereira, H. B. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 92, 104491 (2020).

    Google Scholar 

  • 17.

    Escobar, H. Deforestation in the Brazilian Amazon is still rising sharply. Science 369, 613 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Google Scholar 

  • 19.

    Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).

    Google Scholar 

  • 20.

    Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).

    Google Scholar 

  • 21.

    Jha, S. & Bawa, K. S. Population growth, human development, and deforestation in biodiversity hotspots. Conserv. Biol. 20, 906–912 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    CAS 

    Google Scholar 

  • 23.

    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).

    Google Scholar 

  • 25.

    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    Google Scholar 

  • 26.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Saikku, L., Soimakallio, S. & Pingoud, K. Attributing land-use change carbon emissions to exported biomass. Environ. Impact Assess. Rev. 37, 47–54 (2012).

    Google Scholar 

  • 29.

    Beckman, J., Sands, R. D., Riddle, A. A., Lee, T. & Walloga, J. M. International Trade and Deforestation: Potential Policy Effects via a Global Economic Model (USDA, 2017); https://ideas.repec.org/p/ags/uersrr/262185.html

  • 30.

    Cuypers, D. et al. The Impact of EU Consumption on Deforestation: Comprehensive Analysis of the Impact of EU consumption on Deforestation (European Commission, 2013).

  • 31.

    Zhang, Q. et al. Global timber harvest footprints of nations and virtual timber trade flows. J. Clean. Prod. 250, 119503 (2020).

    Google Scholar 

  • 32.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Google Scholar 

  • 35.

    Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Tropek, R. et al. Comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).

    Google Scholar 

  • 38.

    Forest Fact Book 2017–2018 (Government of Canada Publications, 2017).

  • 39.

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Ericsson, K. & Werner, S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass. Bioenergy 94, 57–65 (2016).

    Google Scholar 

  • 41.

    Kennedy, C. & Southwood, T. The number of species of insects associated with British trees: a re-analysis. J. Anim. Ecol. 53, 455–478 (1984).

    Google Scholar 

  • 42.

    Braun, A. C. H. et al. Assessing the impact of plantation forestry on plant biodiversity: a comparison of sites in Central Chile and Chilean Patagonia. Glob. Ecol. Conserv. 10, 159–172 (2017).

    Google Scholar 

  • 43.

    Kang, D., Wang, X., Li, S. & Li, J. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat. Sci. Rep. 7, 3561 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Erwin, T. L. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).

    Google Scholar 

  • 46.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).

    Google Scholar 

  • 48.

    Bradford, M. & Murphy, H. T. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS ONE 14, e0208377 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).

    Google Scholar 

  • 51.

    Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Weinzettel, J., Vačkář, D. & Medková, H. Human footprint in biodiversity hotspots. Front. Ecol. Environ. 16, 447–452 (2018).

    Google Scholar 

  • 53.

    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).

    Google Scholar 

  • 55.

    Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 102055 (2020).

    Google Scholar 

  • 56.

    Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).

    Google Scholar 

  • 57.

    Blackman, A., Goff, L. & Rivera Planter, M. Does eco-certification stem tropical deforestation? Forest stewardship council certification in mexico. J. Environ. Econ. Manag. 89, 306–333 (2018).

    Google Scholar 

  • 58.

    Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report (NYDF Assessment Partners, 2019).

  • 59.

    Meijer, K. S. A comparative analysis of the effectiveness of four supply chain initiatives to reduce deforestation. Trop. Conserv. Sci. 8, 583–597 (2015).

    Google Scholar 

  • 60.

    Carvalho, W. D. et al. Deforestation control in the brazilian amazon: a conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect. Ecol. Conserv. 17, 122–130 (2019).

    Google Scholar 

  • 61.

    Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202–23208 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).

    Google Scholar 

  • 63.

    Godar, J., Gardner, T. A., Tizado, E. J. & Pacheco, P. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 111, 15591–15596 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Alix-Garcia, J. M., Sims, K. R. E. & Yañez-Pagans, P. Only one tree from each seed? Environmental effectiveness and poverty alleviation in Mexico’s payments for ecosystem services program. Am. Econ. J.: Econ. Policy 7, 1–40 (2015).

    Google Scholar 

  • 65.

    Alix-Garcia, J. M. et al. Payments for environmental services supported social capital while increasing land management. Proc. Natl Acad. Sci. USA 115, 7016–7021 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Börner, J. et al. The effectiveness of payments for environmental services. World Dev. 96, 359–374 (2017).

    Google Scholar 

  • 67.

    Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Annual Review 2017 (PEFC, 2017).

  • 69.

    Higgins, V. & Richards, C. Framing sustainability: alternative standards schemes for sustainable palm oil and South–South trade. J. Rural Stud. 65, 126–134 (2019).

    Google Scholar 

  • 70.

    Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).

    CAS 

    Google Scholar 

  • 71.

    World Countries (ArcGIS, 2020); https://www.arcgis.com/home/item.html?id=d974d9c6bc924ae0a2ffea0a46d71e3d

  • 72.

    Hansen, M. et al. Response to comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).

    CAS 

    Google Scholar 

  • 74.

    Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 094017 (2016).

    Google Scholar 

  • 75.

    Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Yang, Y. et al. Mapping global carbon footprint in China. Nat. Commun. 11, 2237 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Sun, Z., Scherer, L., Tukker, A. & Behrens, P. Linking global crop and livestock consumption to local production hotspots. Glob. Food Sec. 25, 100323 (2020).

    Google Scholar 

  • 78.

    Global Forest Resource Assessment 2000 FAO Forestry Paper 140 (FAO, 2001).

  • 79.

    Sasaki, N. & Putz, F. E. Critical need for new definitions of ‘forest’ and ‘forest degradation’ in global climate change agreements. Conserv. Lett. 2, 226–232 (2009).

    Google Scholar 

  • 80.

    Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Lenzen, M. et al. The Global MRIO Lab – charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Google Scholar 

  • 82.

    Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).

    Google Scholar 

  • 83.

    You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage