in

Mass mortality events of autochthonous faunas in a Lower Cretaceous Gondwanan Lagerstätte

  • 1.

    Neumann, V. H., Borrego, A. G., Cabrera, L. & Dino, R. Organic matter composition and distribution through the Aptian-Albian lacustrine sequences of the Araripe Basin, northeastern Brazil. Int. J. Coal. Geol. 54, 21–40. https://doi.org/10.1016/S0166-5162(03)00018-1 (2003).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Heimhofer, U. & Martill, D. M. Stratigraphy of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 25–43 (Cambridge University Press, 2007).

    Google Scholar 

  • 3.

    Neumann, V. H. M. L. Estratigrafía, sedimentología, geoquímica y diagénesis de los sistemas lacustres Aptienses-Albienses de la Cuenca de Araripe (Noreste de Brasil) (Universidad de Barcelona, 1999).

    Google Scholar 

  • 4.

    Martill, D. M. The geology of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 8–24 (Cambridge University Press, 2007).

    Google Scholar 

  • 5.

    Martill, D. M. & Wilby, P. R. Stratigraphy. In Fossils of the Santana and Crato Formations, Brazil (ed. Martill, D. M.) 20–50 (The Palaeontological Association Field Guides to Fossils, 1993).

    Google Scholar 

  • 6.

    Heimhofer, U. et al. Deciphering the depositional environment of the laminated Crato fossil beds (Early Cretaceous, Araripe Basin, North-eastern Brazil). Sedimentology 57(2), 677–694. https://doi.org/10.1111/j.1365-3091.2009.01114.x (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Martínez-Delclòs, X., Briggs, D. E. G. & Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 19–64. https://doi.org/10.1016/S0031-0182(03)00643-6 (2004).

    Article 

    Google Scholar 

  • 8.

    Menon, F. & Martill, D. M. Taphonomy and preservation of Crato Formation arthropods. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 79–96 (Cambridge University Press, 2007).

    Google Scholar 

  • 9.

    Martins-Neto, R. G. New mayflies (Insecta, Ephemeroptera) from the Santana Formation (Lower Cretaceous), Araripe Basin, northeastern Brazil. Rev. Esp. Paleontol. 11(2), 177–192 (1996).

    Google Scholar 

  • 10.

    Brito, P. M. The Crato Formation fish fauna. In The Crato Fossil Beds of Brazil: Window into an ancient world (eds Martill, D. M. et al.) 429–443 (Cambridge University Press, 2007).

    Google Scholar 

  • 11.

    Sinitshenkova, N. D. The Mesozoic mayflies (Ephemeroptera) with special reference to their ecology. In 4th International Conference of Ephemeroptera (eds Landa, V. et al.) 61–66 (Czechoslovak Academy of Science, 1984).

    Google Scholar 

  • 12.

    Martill, D. M., Brito, P. M. & Washington-Evans, J. Mass mortality of fishes in the Santana Formation (Lower Cretaceous, Albian) of northeast Brazil. Cretac. Res. 29(4), 649–658. https://doi.org/10.1016/j.cretres.2008.01.012 (2008).

    Article 

    Google Scholar 

  • 13.

    Martins-Neto, R. G. Insetos fósseis como bioindicadores em depósitos sedimentares: um estudo de caso para o Cretáceo da Bacia do Araripe (Brasil). Rev. Bras. Zoociências. 8(2), 155–183 (2006).

    Google Scholar 

  • 14.

    Bechly, G. et al. A revision and phylogenetic study of Mesozoic Aeshnoptera, with description of several new families, genera and species (Insecta: Odonata: Anisoptera). Neue Paläontologische Abhandlungen. 4, 1–219 (2001).

    Google Scholar 

  • 15.

    Martins-Neto, R. G. & Gallego, O. F. Death behaviour”—Thanatoethology, new term and concept: A taphonomic analysis providing possible paleoethologic inferences. Special cases from arthropods of the santana formation (Lower Cretaceous, Northeast Brazil). Geociências. 25(2), 241–254 (2006).

    Google Scholar 

  • 16.

    Osés, G. L. et al. Deciphering the preservation of fossil insects: A case study from the Crato Member, Early Cretaceous of Brazil. PeerJ. 4, e2756. https://doi.org/10.7717/peerj.2756 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Saraiva, A. A. F., Hessel, M. H., Guerra, N. C. & Fara, E. Concreções Calcárias da Formação Santana, Bacia do Araripe: uma proposta de classificação. Estud. Geol. 17(1), 40–58 (2007).

    Google Scholar 

  • 18.

    Assine, M. L. Bacia do Araripe. Boletim de Geociências da Petrobras. 15(2), 371–389 (2007).

    Google Scholar 

  • 19.

    Neumann, V. H. & Cabrera, L. Una nueva propuesta estratigráfica para la tectonosecuencia post-rifte de la cuenca de Araripe, nordeste de Brasil. Boletim do 5° Simpósio sobre o Cretáceo do Brasil. 279–285 (1999).

    Google Scholar 

  • 20.

    Viana, M. S. & Neumann, V. H. L. Membro Crato da Formação Santana, Chapada do Araripe, CE-Riquíssimo registro de fauna e flora do Cretáceo. In Sítios Geológicos e Paleontológicos do Brasil (eds Schobbenhaus, C. et al.) 113–120 (Comissão Brasileira de Sítios Geológicos e Paleobiológicos, 2002).

    Google Scholar 

  • 21.

    Staniczek, A. H. Ephemeroptera: Mayflies. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 163–184 (Cambridge University Press, 2007).

    Google Scholar 

  • 22.

    Datta, D., Mukherjee, D. & Ray, S. Taphonomic signatures of a new Upper Triassic phytosaur (Diapsida, Archosauria) bonebed from India: Aggregation of a juvenile-dominated paleocommunity. J. Vertebr. Paleontol. 39(6), e1726361 (2020).

    Article 

    Google Scholar 

  • 23.

    Barling, N. The Fidelity of Preservation of Insects from the Crato Formation (Lower Cretaceous) of Brazil (University of Portsmouth, 2018).

    Google Scholar 

  • 24.

    Boucot, A. J. Evolutionary Paleobiology of Behavior and Coevolution (Elsevier, 1990).

    Google Scholar 

  • 25.

    Grande, L. Palaeontology of the Green River Formation, with a Review of the Fish Fauna 2nd edn, Vol. 63, 1–333 (Geological Survey of Wyoming Bulletin, 1984).

    Google Scholar 

  • 26.

    McCafferty, W. P. Chapter 2. Ephemeroptera. Bull. Am. Mus. Nat. Hist. 195, 20–50 (1990).

    Google Scholar 

  • 27.

    Meshkova, N. P. On nymph Ephemeropsis trisetalis Eichwald (Insecta). Paleontol. Zh. 4, 164–168 (1961).

    Google Scholar 

  • 28.

    Polegatto, C. M. & Zamboni, J. C. Inferences regarding the feeding behavior and morphoecological patterns of fossil mayfly nymphs (Insecta Ephemeroptera) from the Lower Cretaceous Santana Formation of northeastern Brazil. Acta. Geol. Leopold. 24, 145–160 (2001).

    Google Scholar 

  • 29.

    Bouchard, R. W. Guide to Aquatic Macroinvertebrates of the Upper Midwest (University of Minnesota, 2004).

    Google Scholar 

  • 30.

    Tshernova, O. A. On the classification of Fossil and Recent Ephemeroptera. Entomol. Rev. 49, 71–81 (1970).

    Google Scholar 

  • 31.

    Braz, F. F. Registro angiospérmico Eocretáceo do Membro Crato, Formação Santana, Bacia do Araripe, NE do Brasil: Interpretações paleoambientais, paleoclimáticas e paleofitogeográficas (Universidade de São Paulo, 2012).

    Google Scholar 

  • 32.

    Archibald, S. B. & Makarkin, V. N. Tertiary giant lacewings (Neuroptera: Polystoechotidae): Revision and description of new taxa from western North America and Denmark. J. Syst. Palaeontol. 4, 1–37. https://doi.org/10.1017/S1477201906001817 (2005).

    Article 

    Google Scholar 

  • 33.

    Boyero, L., Cardinale, B. J., Bastian, M. & Pearson, R. G. Biotic vs abiotic control of decomposition: A comparison of the effects of simulated extinctions and changes in temperature. PLoS ONE 9(1), e87426. https://doi.org/10.1371/journal.pone.0087426 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Gall, J. C. Les Voiles Microbiens. Leur Contribution à la Fossilisation des Organismes au Corps Mou. Lethaia 23, 21–28 (1990).

    Article 

    Google Scholar 

  • 35.

    Martill, D. M. Fish oblique to bedding in early diagenetic concretions from the Cretaceous Santana Formation of Brazil e implications for substrate consistency. Palaeontology 41, 1011–1026 (1997).

    Google Scholar 

  • 36.

    Iniesto, M. et al. Soft tissue histology of insect larvae decayed in laboratory experiments using microbial mats: Taphonomic comparison with Cretaceous fossil insects from the exceptionally preserved biota of Araripe, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 564, 110156. https://doi.org/10.1016/j.palaeo.2020.110156 (2021).

    Article 

    Google Scholar 

  • 37.

    Kok, M. D., Schouten, S. & Damsté, J. S. S. Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates. Geochim. Cosmochim. Acta. 64, 2689–2699. https://doi.org/10.1016/S0016-7037(00)00382-3 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Kluge, N. J. The Phylogenetic System of Ephemeroptera (Kluwer Academic, 2004). https://doi.org/10.1007/978-94-007-0872-3.

    Google Scholar 

  • 39.

    Camp, A. A., Funk, D. H. & Buchwalter, D. B. A stressful shortness of breath: Molting disrupts breathing in the mayfly Cloeon dipterum. Freshw. Sci. 33(3), 695–699. https://doi.org/10.1086/677899 (2014).

    Article 

    Google Scholar 

  • 40.

    Mohr, B. A. R., Bernardes-De-Oliveira, M. E. C. & Loveridge, R. F. The macrophyte flora of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 537–565 (Cambridge University Press, 2007).

    Google Scholar 

  • 41.

    Kunzmann, L., Mohr, B. A. R. & Bernardes-De-Oliveira, M. E. C. Gymnosperms from the Early Cretaceous Crato Formation (Brazil). I. Araucariaceae and Lindleycladus (incertae sedis). Foss. Rec. 7, 155–174. https://doi.org/10.1002/mmng.20040070109 (2004).

    Article 

    Google Scholar 

  • 42.

    Mohr, B., Schultka, S., Süss, H. & Bernardes-De Oliveira, M. E. C. A new drought resistant gymnosperm taxon Duartenia araripensis gen. nov. et sp. nov. (Cheirolepidiaceae?) from the Early Cretaceous of Northern Gondwana. Palaeontogr. Abt. B. 289(1–3), 1–25. https://doi.org/10.1127/palb/289/2012/1 (2012).

    Article 

    Google Scholar 

  • 43.

    Bernardes-De-Oliveira, M. E. C. et al. Indicadores Paleoclimáticos na Paleoflora do Crato, final do Aptiano do Gondwana Norocidental. In Paleontologia: Cenários de Vida-Paleoclimas (eds Carvalho, I. S. et al.) 100–118 (Editora Interciência, 2013).

    Google Scholar 

  • 44.

    Kershaw, P. & Wagstaff, B. The Southern Conifer Family Araucariaceae: History, status, and value for paleoenvironmental reconstruction. Annu. Rev. Ecol. Syst. 32, 397–414. https://doi.org/10.1146/annurev.ecolsys.32.081501.114059 (2001).

    Article 

    Google Scholar 

  • 45.

    Lima, F. J. et al. Fire in the paradise: Evidence of repeated palaeo-wildfires from the Araripe Fossil Lagerstätte (Araripe Basin, Aptian-Albian), Northeast Brazil. Palaeobio. Palaeoenv. 99, 367–378. https://doi.org/10.1007/s12549-018-0359-7 (2019).

    Article 

    Google Scholar 

  • 46.

    Makarkin, V. N. & Menon, F. New species of the Mesochrysopidae (Insecta, Neuroptera) from the Crato Formation of Brazil (Lower Cretaceous), with taxonomic treatment of the family. Cretac. Res. 26, 801–812. https://doi.org/10.1016/j.cretres.2005.05.009 (2005).

    Article 

    Google Scholar 

  • 47.

    Martill, D. M., Loveridge, R. & Heimhofer, U. Halite pseudomorphs in the Crato Formation (Early Cretaceous, Late Aptian-Early Albian), Araripe Basin, northeast Brazil: Further evidence for hypersalinity. Cretac. Res. 28(4), 613–620. https://doi.org/10.1016/j.cretres.2006.10.003 (2007).

    Article 

    Google Scholar 

  • 48.

    Williams, W. D. Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes and Reservoirs. Res. Manag. 4, 85–91. https://doi.org/10.1046/j.1440-1770.1999.00089.x (1999).

    Article 

    Google Scholar 

  • 49.

    Clarke, R. T. & Hering, D. Errors and uncertainty in bioassessment methods, major results and conclusions from the STAR project and their application using STARBUGS. Hydrobiologia 566, 433–439. https://doi.org/10.1007/s10750-006-0079-2 (2006).

    Article 

    Google Scholar 

  • 50.

    Williams, W. D. Salinity tolerances of four species of fish from the Murray-Darling River system. Hydrobiologia 210, 145–160 (1991).

    Article 

    Google Scholar 

  • 51.

    Lancaster, J. & Scudder, G. G. E. Aquatic Coleoptera and Hemiptera in some Canadian saline lakes: Patterns in community structure. Can. J. Zool. 65(6), 1383–1390. https://doi.org/10.1139/z87-218 (1987).

    Article 

    Google Scholar 

  • 52.

    Metzeling, L. Benthic macroinvertebrate community structure in streams of different salinities. Mar. Freshw. Res. 44, 335–351. https://doi.org/10.1071/MF9930335 (1993).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Berezina, N. A. Tolerance of freshwater invertebrates to changes in water salinity. Russ. J. Ecol. 34(4), 261–266. https://doi.org/10.1023/A:1024597832095 (2003).

    Article 

    Google Scholar 

  • 54.

    Kefford, B. J., Dalton, A., Palmer, C. G. & Nugegoda, D. The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in south-east Australia and South Africa. Hydrobiologia 517(1–3), 179–192. https://doi.org/10.1023/B:HYDR.0000027346.06304.bc (2004).

    Article 

    Google Scholar 

  • 55.

    Chadwick, M. A., Hunter, H., Feminella, J. W. & Henry, R. P. Salt and water balance in Hexagenia limbata (Ephemeroptera: Ephemeridae) when exposed to brackish water. Fla. Entomol. 85, 650–651. https://doi.org/10.1653/0015-4040(2002)085[0650:SAWBIH]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • 56.

    James, K. R., Cant, B. & Ryan, T. Responses of freshwater biota to rising salinity levels and implications for saline water management: A review. Aust. J. Bot. 51(6), 703. https://doi.org/10.1071/BT02110 (2003).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Nielsen, D. L., Brock, M. A., Rees, G. N. & Baldwin, D. S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 51(6), 655–665. https://doi.org/10.1071/BT02115 (2003).

    Article 

    Google Scholar 

  • 58.

    Hart, B. T., Lake, P. S., Webb, J. A. & Grace, M. R. Ecological risk to aquatic systems from salinity increases. Aust. J. Bot. 51(6), 689. https://doi.org/10.1071/BT02111 (2003).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Bagarinao, T. Systematics, genetics and life history of milkfish, Chanos chanos. Environ. Biol. Fishes. 39, 23–41 (1994).

    Article 

    Google Scholar 

  • 60.

    Davis, S. P. & Martill, D. M. The Gonorynchiform fish Dastilbe from the Lower Cretaceous of Brazil. Palaeontology 42(4), 715–740 (2003).

    Article 

    Google Scholar 

  • 61.

    Jell, P. A. & Duncan, P. M. Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra fossil bed (Korumburra group), South Gippsland, Victoria. In Plants and invertebrates from the Lower Cretaceous Koonwarra fossil bed, South Gippsland, Victoria (eds Jell, P. A. & Roberts, J.) 111–205 (Memoir of the Association of Australasian Palaeontologists, 1986).

    Google Scholar 

  • 62.

    Ponomarenko, A. G. Fossil insects from the Tithonian ‘Solnhofener Plattenkalke’ in the Museum of Natural History, Vienna. Ann. Naturhist. Mus. Wien. 87, 135–144 (1985).

    Google Scholar 

  • 63.

    Zhang, J. & Zhang, H. Insects and spiders. In The Jehol Biota (eds Chang, M. et al.) 59–68 (Shanghai Scientific and Technical Publishers, 2003).

    Google Scholar 

  • 64.

    Hellawell, J. & Orr, P. J. Deciphering taphonomic processes in the Eocene Green River Formation of Wyoming. Palaeobiodivers. Palaeoenviron. 93, 353–365. https://doi.org/10.1007/s12549-012-0092-6 (2012).

    Article 

    Google Scholar 

  • 65.

    McGrew, P. O. Taphonomy of Eocene fish from Fossil Basin, Wyoming. Fieldiana Geology. 33, 257–270 (1975).

    Google Scholar 

  • 66.

    Krzemiński, W., Soszyńska-Maj, A., Bashkuev, A. S. & Kopeć, K. Revision of the unique Early Cretaceous Mecoptera from Koonwarra (Australia) with description of a new genus and family. Cretac. Res. 52, 501–506. https://doi.org/10.1016/j.cretres.2014.04.004 (2015).

    Article 

    Google Scholar 

  • 67.

    Elder, R. L. & Smith, G. R. Fish taphonomy and environmental inference in Paleolimnology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 62, 577–592 (1988).

    Article 

    Google Scholar 

  • 68.

    Huang, D. Tarwinia australis (Siponaptera: Tarwiniidae) from the Lower Cretaceous Koonwarra fossil bed: Morphological revision and analysis of its evolutionary relationship. Cretac. Res. 52, 507–515 (2015).

    Article 

    Google Scholar 

  • 69.

    Waldman, M. Fish from the freshwater Lower Cretaceous of Victoria, Australia with comments of the palaeo-environment. Spec. Pap. Palaeontol. 9, 1–124 (1971).

    Google Scholar 

  • 70.

    Brittain, J. E. & Sartori, M. Ephemeroptera. In Encyclopedia of Insects (eds Resh, V. H. & Cardé, R. T.) 328–334 (Academic Press, 2002).

    Google Scholar 

  • 71.

    Bartell, K. W., Swinburne, N. H. M. & Conway-Morris, S. Solnhofen: A Study in Mesozoic Palaeontology (Cambridge University Press, 1990).

    Google Scholar 

  • 72.

    Bechly, G. New fossil dragonflies from the Lower Cretaceous Crato Formation of north-east Brazil (Insecta: Odonata). Stuttgarter Beitrage zur Naturkunde. 264, 1–66 (1998).

    Google Scholar 

  • 73.

    Fielding, S., Martill, D. M. & Naish, D. Solnhofen-style soft-tissue preservation in a new species of turtle from the Crato Formation (Early Cretaceous, Aptian) of north-east Brazil. Palaeontology 48, 1301–1310. https://doi.org/10.1111/j.1475-4983.2005.00508.x (2005).

    Article 

    Google Scholar 

  • 74.

    Sartori, M. & Brittain, J. E. Order Ephemeroptera. In Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates (eds Thorp, J. & Rogers, D. C.) 873–891 (Academic Press, 2015).

    Google Scholar 

  • 75.

    Chang, M. M., Chen, P. J., Wang, Y. Q., Wang, Y. & Miao, D. S. The Jehol Fossils: TheEmergence of Feathered Dinosaurs, Beaked Birds and Flowering Plants (Academic Press, 2007).

    Google Scholar 

  • 76.

    Zhang, X. & Sha, J. Sedimentary laminations in the lacustrine Jianshangou Bed of the Yixian Formation at Sihetun, western Liaoning, China. Cretac. Res. 36, 96–105. https://doi.org/10.1016/j.cretres.2012.02.010 (2012).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Fürsich, F. T., Sha, J., Jiang, B. & Pan, Y. High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE-China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 434–457. https://doi.org/10.1016/j.palaeo.2007.06.012 (2007).

    Article 

    Google Scholar 

  • 78.

    Pan, Y., Sha, J. & Fürsich, F. A model for organic fossilization of the Early Cretaceous Jehol Lagerstätte based on the taphonomy of “Ephemeropsis trisetalis”. Palaios 29(7/8), 363–377 (2014).

    ADS 
    Article 

    Google Scholar 

  • 79.

    Upchurch, G. R. & Doyle, J. A. Paleoecology of the conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia. In Geobotany II (ed. Romans, R. C.) 167–202 (Plenum, 1981).

    Google Scholar 

  • 80.

    Maisey, J. G. A new Clupeomorph fish from the Santana Formation (Albian) of NE Brazil. Am. Mus. Novit. 3076, 1–15 (1993).

    Google Scholar 

  • 81.

    Valença, M. M., Neumann, V. H. & Mabesoone, J. M. An overview on Callovian-Cenomanian intracratonic basins of northeast Brazil: Onshore stratigraphic record of the opening of the southern Atlantic. Geol. Acta. 1, 261–275. https://doi.org/10.1344/105.000001614 (2003).

    Article 

    Google Scholar 

  • 82.

    Barling, N., Martill, D. M., Heads, S. W. & Gallien, F. High fidelity preservation of fossil insects from the Crato Formation (Lower Cretaceous) of Brazil. Cretac. Res. 52(B), 605–622. https://doi.org/10.1016/j.cretres.2014.05.007 (2015).

    Article 

    Google Scholar 

  • 83.

    Catto, B., Jahnert, R. J., Warren, L. V., Varejão, F. G. & Assine, M. L. The microbial nature of laminated limestones: lessons from the Upper Aptian, Araripe Basin, Brazil. Sediment. Geol. 341, 304–315. https://doi.org/10.1016/j.sedgeo.2016.05.007 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 84.

    Warren, L. V. et al. Stromatolites from the Aptian Crato Formation, a hypersaline lake system in the Araripe Basin, northeastern Brazil. Facies 63(3), 2016. https://doi.org/10.1007/s10347-016-0484-6 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Design could enable longer lasting, more powerful lithium batteries

    Cooling homes without warming the planet