in

Metabolomic signatures of coral bleaching history

  • 1.

    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).

    CAS  PubMed  Google Scholar 

  • 2.

    Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27, 454–460 (1977).

    Google Scholar 

  • 3.

    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).

    Google Scholar 

  • 4.

    National Academies of Sciences, Engineering, and Medicine A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (The National Academies Press, 2019); https://doi.org/10.17226/25279

  • 5.

    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).

    CAS  PubMed  Google Scholar 

  • 6.

    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

    CAS  PubMed  Google Scholar 

  • 7.

    Bay, R. & Palumbi, S. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Ziegler, M., Seneca, F., Yum, L. & P, S.-N. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Hillyer, K. E. et al. 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics 14, 12 (2018).

    Google Scholar 

  • 11.

    Hillyer, K. E. et al. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs 36, 105–118 (2017).

    Google Scholar 

  • 12.

    Sogin, E. M., Putnam, H., Gates, R. D., Putnam, H. M. & Anderson, P. E. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral Pocillopora damicornis. Metablomics 12, 71 (2016).

    Google Scholar 

  • 13.

    Hillyer, K. E., Tumanov, S., Villas-Bô As, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. https://doi.org/10.1242/jeb.128660 (2016).

  • 14.

    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).

    Google Scholar 

  • 15.

    Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Thomas, L. & Palumbi, S. R. The genomics of recovery from coral bleaching. Proc. R. Soc. B 284, 20171790 (2017).

    PubMed  Google Scholar 

  • 17.

    Wall, C. B. et al. Shifting baselines: repeat bleaching drives coral physiotypes through environmental legacy and cellular memory. Preprint at bioRxiv https://doi.org/10.1101/2020.04.23.056457 (2020).

  • 18.

    Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. 8, 178 (2020).

    Google Scholar 

  • 19.

    Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).

    Google Scholar 

  • 20.

    van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).

    Google Scholar 

  • 21.

    Anthony, K. R. N. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Change Biol. 21, 48–61 (2015).

    Google Scholar 

  • 22.

    da Silva, R. R., Lopes, N. P. & Silva, D. B. in Mass Spectrometry in Chemical Biology: Evolving Applications (eds da Silva, R. R. & Lopes, N. P.) 57–81 (Royal Society of Chemistry, 2017).

  • 23.

    Cunning, R., Ritson-Williams, R. & Gates, R. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).

    CAS  Google Scholar 

  • 24.

    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Rosset, S. et al. Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts. Coral Reefs 38, 1241–1253 (2019).

    Google Scholar 

  • 26.

    Li, Y. et al. Simultaneous structural identification of diacylglyceryl-N-trimethylhomoserine (DGTS) and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) in microalgae using dual Li+/H+ adduct ion mode by ultra-performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. 31, 457–468 (2017).

    CAS  PubMed  Google Scholar 

  • 27.

    Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian–dinoflagellate symbiosis. Proc. Natl Acad. Sci. USA 114, 13194–13199 (2017).

    CAS  PubMed  Google Scholar 

  • 28.

    Weis, V. M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).

    CAS  PubMed  Google Scholar 

  • 29.

    Mansour, J. S., Pollock, F. J., Díaz-Almeyda, E., Iglesias-Prieto, R. & Medina, M. Intra- and interspecific variation and phenotypic plasticity in thylakoid membrane properties across two Symbiodinium clades. Coral Reefs 37, 841–850 (2018).

    Google Scholar 

  • 30.

    Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).

    CAS  PubMed  Google Scholar 

  • 31.

    Quinn, R. A. et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc. R. Soc. B 283, 20160469 (2016).

    PubMed  Google Scholar 

  • 32.

    Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Galtier d’Auriac, I. et al. Before platelets: the production of platelet-activating factor during growth and stress in a basal marine organism. Proc. R. Soc. B 285, 20181307 (2018).

    PubMed  Google Scholar 

  • 34.

    Quistad, S. D. et al. Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. Proc. Natl Acad. Sci. USA 111, 9567–9572 (2014).

    CAS  PubMed  Google Scholar 

  • 35.

    Williams, A. et al. Metabolomic shifts associated with heat stress in coral holobionts. Sci. Adv. 7, eabd4210 (2021).

    PubMed Central  Google Scholar 

  • 36.

    Takahashi, N. Chemistry of Plant Hormones (CRC, 1986).

  • 37.

    Reyes, F., Martín, R. & Fernández, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod. 69, 668–670 (2006).

    CAS  PubMed  Google Scholar 

  • 38.

    Hill, R., Larkum, A. W. & Kramer, D. Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching. Coral Reefs 31, 963–975 (2012).

    Google Scholar 

  • 39.

    Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).

    CAS  PubMed  Google Scholar 

  • 40.

    Martin, F. J. et al. A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    CAS  PubMed  Google Scholar 

  • 43.

    Dixon, G., Abbott, E. & Matz, M. Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. https://doi.org/10.1111/mec.15535 (2020).

  • 44.

    Boström-Einarsson, L. et al. Coral restoration – a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    PubMed  Google Scholar 

  • 46.

    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Bay, R., Rose, N., Logan, C. & Palumbi, S. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

    PubMed  Google Scholar 

  • 49.

    Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).

    Google Scholar 

  • 50.

    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    CAS  PubMed  Google Scholar 

  • 52.

    Martin, C. et al. Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry. Sci. Rep. 9, 3019 (2019).

    Google Scholar 

  • 53.

    Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. C. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34, 155–160 (2015).

    Google Scholar 

  • 54.

    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing inequality across the globe and on campus

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100