in

Metabolomics shows the Australian dingo has a unique plasma profile

  • 1.

    Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E. & Lundeberg, J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci. USA 101, 12387–12390. https://doi.org/10.1073/pnas.0401814101 (2004).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 2.

    Smith, B. P. et al. Taxonomic status of the Australian dingo: The case for Canis dingo Meyer, 1793. Zootaxa 4564, 173–197. https://doi.org/10.11646/zootaxa.4564.1.6 (2019).

    Article  Google Scholar 

  • 3.

    Ballard, J. W. O. & Wilson, L. A. B. The Australian dingo: Untamed or feral?. Front. Zool. 16, 1–19. https://doi.org/10.1186/s12983-019-0300-6 (2019).

    Article  Google Scholar 

  • 4.

    Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).

    Article  PubMed  Google Scholar 

  • 5.

    Letnic, M., Crowther, M. & Koch, F. Does a top-predator provide an endangered rodent with refuge from an invasive mesopredator?. Anim. Conserv. 12, 302–312 (2009).

    Article  Google Scholar 

  • 6.

    Doherty, T. S. et al. Continental patterns in the diet of a top predator: Australia’s dingo. Mammal. Rev. 49, 31–44. https://doi.org/10.1111/mam.12139 (2019).

    Article  Google Scholar 

  • 7.

    Stephens, D., Wilton, A. N., Fleming, P. J. & Berry, O. Death by sex in an Australian icon: A continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol. Ecol. 24, 5643–5656 (2015).

    CAS  Article  Google Scholar 

  • 8.

    Spady, T. C. & Ostrander, E. A. Canine behavioral genetics: Pointing out the phenotypes and herding up the genes. Am. J. Hum. Genet. 82, 10–18. https://doi.org/10.1016/j.ajhg.2007.12.001 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Wayne, R. K. Consequences of domestication: Morphological diversity of the dog. In The Genetics of the Dog (ed. Ruvinsky, A.) 43–60 (CAB International, Wallingford, 2001).

    Google Scholar 

  • 10.

    Parker, H. G. et al. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 19, 697–708. https://doi.org/10.1016/j.celrep.2017.03.079 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Johannes, J. E. Basenji origin and migration: At Africa’s Doorstep. Off. Bull. Basenji Am. 38, 18–19 (2004).

    Google Scholar 

  • 12.

    Fuller, J. L. Photoperiodic control of estrus in the Basenji. J. Hered. 47, 179–180 (1956).

    Article  Google Scholar 

  • 13.

    Talenti, A. et al. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution. Ecol. Evol. 8, 2911–2925. https://doi.org/10.1002/ece3.3842 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Field, M. A. et al. Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C. Gigascience 9, giaa027. https://doi.org/10.1093/gigascience/giaa027 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Pendleton, A. L. et al. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. Bmc Biol. 16, 64. https://doi.org/10.1186/s12915-018-0535-2 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Jackson, S. M. et al. The Dogma of Dingoes—Taxonomic status of the dingo: A reply to Smith et al. Zootaxa 4564, 198–212 (2019).

    Article  Google Scholar 

  • 17.

    Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. Plos Genet 10, e1004016. https://doi.org/10.1371/journal.pgen.1004016 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Arendt, M., Cairns, K. M., Ballard, J. W., Savolainen, P. & Axelsson, E. Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity 117, 301–306. https://doi.org/10.1038/hdy.2016.48 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Beckmann, M. et al. Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs. Br. J. Nutr. 103, 1127–1138. https://doi.org/10.1017/S000711450999300X (2010).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Clinquart, A., Van Eenaeme, C., Mayombo, A. P., Gauthier, S. & Istasse, L. Plasma hormones and metabolites in cattle in relation to breed (Belgian Blue vs Holstein) and conformation (double-muscled vs dual-purpose type). Vet. Res.Commun. 19, 185–194. https://doi.org/10.1007/BF01839297 (1995).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Viant, M. R., Ludwig, C., Rhodes, S., Gunther, U. L. & Allaway, D. Validation of a urine metabolome fingerprint in dog for phenotypic classification (vol 3, pg 453, 2007). Metabolomics 5, 517–517. https://doi.org/10.1007/s11306-009-0172-4 (2009).

    CAS  Article  Google Scholar 

  • 22.

    Gopalakrishnan, S. et al. Interspecific gene flow shaped the evolution of the genus Canis. Curr. Biol. 28, 3441–3449. https://doi.org/10.1016/j.cub.2018.08.041 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Gottelli, D. et al. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol. Ecol. 3, 301–312. https://doi.org/10.1111/j.1365-294x.1994.tb00070.x (1994).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Galov, A. et al. First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. R. Soc. Open Sci. 2, 150450. https://doi.org/10.1098/rsos.150450 (2015).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 25.

    Adams, J. R., Leonard, J. A. & Waits, L. P. Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Mol. Ecol. 12, 541–546. https://doi.org/10.1046/j.1365-294x.2003.01708.x (2003).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Roy, M. S., Geffen, E., Smith, D. & Wayne, R. K. Molecular genetics of pre-1940 red wolves. Conserv. Biol. 10, 1413–1424 (1996).

    Article  Google Scholar 

  • 27.

    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83 (1996).

    Article  Google Scholar 

  • 28.

    Fiehn, O. Metabolomics: The link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171. https://doi.org/10.1023/A:1013713905833 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459. https://doi.org/10.1038/nrm.2016.25 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    van Ravenzwaay, B. et al. The use of metabolomics for the discovery of new biomarkers of effect. Toxicol. Lett. 172, 21–28. https://doi.org/10.1016/j.toxlet.2007.05.021 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Hanhineva, K. et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J. Nutr. 145, 7–17. https://doi.org/10.3945/jn.114.196840 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Khamis, M. M., Adamko, D. J. & El-Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. 36, 115–134. https://doi.org/10.1002/mas.21455 (2017).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 33.

    Mamas, M., Dunn, W. B., Neyses, L. & Goodacre, R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 85, 5–17. https://doi.org/10.1007/s00204-010-0609-6 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 34.

    Ferlizza, E. et al. Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J. Proteom. 222, 103795. https://doi.org/10.1016/j.jprot.2020.103795 (2020).

    CAS  Article  Google Scholar 

  • 35.

    Colyer, A., Gilham, M. S., Kamlage, B., Rein, D. & Allaway, D. Identification of intra- and inter-individual metabolite variation in plasma metabolite profiles of cats and dogs. Br. J. Nutr. 106(Suppl 1), S146-149. https://doi.org/10.1017/S000711451100081X (2011).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Lloyd, A. J. et al. Ultra high performance liquid chromatography-high resolution mass spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and non-standardized diets. Metabolomics 13, 15. https://doi.org/10.1007/s11306-016-1152-0 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Carlos, G., Dos Santos, F. P. & Froehlich, P. E. Canine metabolomics advances. Metabolomics 16, 16. https://doi.org/10.1007/s11306-020-1638-7 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Carthey, A. J. R., Bucknall, M. P., Wierucka, K. & Banks, P. B. Novel predators emit novel cues: A mechanism for prey naivety towards alien predators. Sci. Rep. 7, 16377. https://doi.org/10.1038/s41598-017-16656-z (2017).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 39.

    Nicholson, G. et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol. Syst. Biol. 7, 525. https://doi.org/10.1038/msb.2011.57 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Suhre, K. & Gieger, C. Genetic variation in metabolic phenotypes: study designs and applications. Nat. Rev. Genet. 13, 759–769. https://doi.org/10.1038/nrg3314 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276. https://doi.org/10.1038/ng.1073 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Fujisaka, S. et al. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell. Rep. 22, 3072–3086. https://doi.org/10.1016/j.celrep.2018.02.060 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Söder, J. et al. Plasma metabolomics reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Vet. Scand. 61, 1–12 (2019).

    Article  ADS  Google Scholar 

  • 44.

    Boretti, F. S. et al. Serum lipidome analysis of healthy beagle dogs receiving different diets. Metabolomics 16, 1 (2020).

    CAS  Article  Google Scholar 

  • 45.

    Lyu, T. S. et al. Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). Amb. Express 8, 1–12. https://doi.org/10.1186/s13568-018-0652-x (2018).

    Article  Google Scholar 

  • 46.

    Zhang, S. J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 671. https://doi.org/10.1038/s41467-020-14515-6 (2020).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 47.

    Lee, R. K., Wurtman, R. J., Cox, A. J. & Nitsch, R. M. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 8083–8087. https://doi.org/10.1073/pnas.92.17.8083 (1995).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 48.

    Li, Q., Chen, J., Yu, X. & Gao, J. M. A mini review of nervonic acid: Source, production, and biological functions. Food Chem. 301, 125286. https://doi.org/10.1016/j.foodchem.2019.125286 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Schauer, R. Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499. https://doi.org/10.1023/a:1011062223612 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Wang, G. D. et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21–33. https://doi.org/10.1038/cr.2015.147 (2016).

    Article  PubMed  Google Scholar 

  • 51.

    Pavlova, T. et al. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta 987, 72–80. https://doi.org/10.1016/j.aca.2017.08.022 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Webster, P. M., Hoover, W. H. & Miller, T. K. Determination of 2,6 Diaminopimelic acid in biological-materials using high-performance liquid-chromatography. Anim. Feed Sci. Technol. 30, 11–20. https://doi.org/10.1016/0377-8401(90)90048-D (1990).

    CAS  Article  Google Scholar 

  • 53.

    Vranova, V., Lojkova, L., Rejsek, K. & Formanek, P. Significance of the natural occurrence of L- versus D-pipecolic acid: A review. Chirality 25, 823–831. https://doi.org/10.1002/chir.22237 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Lin, C., Wan, J., Su, Y. & Zhu, W. Effects of early intervention with maternal fecal microbiota and antibiotics on the gut microbiota and metabolite profiles of piglets. Metabolites 8, 89. https://doi.org/10.3390/metabo8040089 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  • 55.

    Sawada, S. & Yamamoto, C. Gamma-D-glutamylglycine and cis-2,3-piperidine dicarboxylate as antagonists of excitatory amino-acids in the hippocampus. Exp. Brain Res. 55, 351–358 (1984).

    CAS  Article  Google Scholar 

  • 56.

    Lewis, E. D., Meydani, S. N. & Wu, D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life 71, 487–494. https://doi.org/10.1002/iub.1976 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    D’Arrigo, P. & Servi, S. Synthesis of lysophospholipids. Molecules 15, 1354–1377. https://doi.org/10.3390/molecules15031354 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Birgbauer, E. & Chun, J. New developments in the biological functions of lysophospholipids. Cell Mol. Life Sci. 63, 2695–2701. https://doi.org/10.1007/s00018-006-6155-y (2006).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids: Receptor revelations. Science 294, 1875–1878. https://doi.org/10.1126/science.1065323 (2001).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 60.

    Li, Z. & Vance, D. E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194. https://doi.org/10.1194/jlr.R700019-JLR200 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    van der Veen, J. N. et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. BBA https://doi.org/10.1016/j.bbamem.2017.04.006 (2017).

    Article  Google Scholar 

  • 62.

    Vance, D. E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol. 19, 229–234. https://doi.org/10.1097/MOL.0b013e3282fee935 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Segal, S. Defective galactosylation in galactosemia: Is low cell UDPgalactose an explanation?. Eur. J. Pediatr. 154, S65–S71 (1995).

    CAS  Article  Google Scholar 

  • 64.

    Ollivier, M. et al. Amy2B copy number variation reveals starch diet adaptations in ancient European dogs. R. Soc. Open Sci. 3, 160449 (2016).

    Article  ADS  Google Scholar 

  • 65.

    Arendt, M., Fall, T., Lindblad-Toh, K. & Axelsson, E. Amylase activity is associated with AMY 2B copy numbers in dog: Implications for dog domestication, diet and diabetes. Anim. Genet. 45, 716–722 (2014).

    CAS  Article  Google Scholar 

  • 66.

    Hoenig, M. Progress in Molecular Biology and Translational Science Vol. 121, 377–412 (Elsevier, Amstredam, 2014).

    Google Scholar 

  • 67.

    Bradshaw, J. W. The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). J. Nutr. 136, 1927S-1931S. https://doi.org/10.1093/jn/136.7.1927S (2006).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Surbakti, S. et al. New Guinea highland wild dogs are the original New Guinea singing dogs. Proc. Natl. Acad. Sci. USA 117, 24369–24376. https://doi.org/10.1073/pnas.2007242117 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 69.

    Wilton, A. N. In A Symposium on the Dingo’ 49–56.

  • 70.

    Mackay, G. M., Zheng, L., Van Den Broek, N. J. & Gottlieb, E. Methods in Enzymology Vol. 561, 171–196 (Elsevier, Amsterdam, 2015).

    Google Scholar 

  • 71.

    Zhang, T., Creek, D. J., Barrett, M. P., Blackburn, G. & Watson, D. G. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Anal. Chem. 84, 1994–2001. https://doi.org/10.1021/ac2030738 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Team, R. C. & DC, R. A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2012). https://www.R-project.org (2019).

  • 73.

    Fox, J. et al. Package ‘car’ (R Foundation for Statistical Computing, Vienna, 2012).

    Google Scholar 

  • 74.

    Champely, S. et al. Package ‘pwr’. R package version 1 (2018).


  • Source: Ecology - nature.com

    MIT and Danish university students unite to envision a more sustainable future

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific