in

Microbial storage and its implications for soil ecology

  • 1.

    Pond C. Storage. In: Townsend C, Calow P, editors. Physiological ecology. Oxford: Blackwell Scientific; 1981. p. 190–219.

  • 2.

    Chapin FS, Schulze E, Mooney HA. The ecology and economics of storage in plants. Annu Rev Ecol Syst. 1990;21:423–47.

    Article 

    Google Scholar 

  • 3.

    Moradali MF, Rehm BHA. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020;18:195–210.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Varpe Ø. Life history adaptations to seasonality. Integr Comp Biol. 2017;57:943–60.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Paul EA. Soil microbiology, ecology and biochemistry. 4th ed. Waltham, MA: Academic Press; 2015.

  • 6.

    Becker KW, Collins JR, Durham BP, Groussman RD, White AE, Fredricks HF, et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat Commun. 2018;9:1–9.

    Article 
    CAS 

    Google Scholar 

  • 7.

    Rothermich MM, Guerrero R, Lenz RW, Goodwin S. Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol. 2000;66:13.

    Article 

    Google Scholar 

  • 8.

    Borzi A. Le comunicazioni intracellulari delle Nostochinee. Malpighia. 1887;1:28–74.

    Google Scholar 

  • 9.

    Sherman LA, Meunier P, Colón-López MS. Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth Res. 1998;58:25–42.

    CAS 
    Article 

    Google Scholar 

  • 10.

    Stuart RK, Mayali X, Boaro AA, Zemla A, Everroad RC, Nilson D, et al. Light regimes shape utilization of extracellular organic C and N in a cyanobacterial biofilm. mBio. 2016;7:e00650–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Allen MM. Cyanobacterial cell inclusions. Annu Rev Microbiol. 1984;38:1–25.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: a multifunctional metabolite in cyanobacteria and algae. Front Plant Sci. 2020;11:938.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Martin P, Lauro FM, Sarkar A, Goodkin N, Prakash S, Vinayachandran PN. Particulate polyphosphate and alkaline phosphatase activity across a latitudinal transect in the tropical Indian Ocean: polyphosphate in the tropical Indian Ocean. Limnol Oceanogr. 2018;63:1395–406.

    CAS 
    Article 

    Google Scholar 

  • 14.

    Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Godwin CM, Cotner JB. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry. ISME J. 2015;9:2324–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Oehmen A, Lemos P, Carvalho G, Yuan Z, Keller J, Blackall L, et al. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007;41:2271–300.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Dorofeev AG, Nikolaev YuA, Mardanov AV, Pimenov NV. Role of phosphate-accumulating bacteria in biological phosphorus removal from wastewater. Appl Biochem Microbiol. 2020;56:1–14.

    CAS 
    Article 

    Google Scholar 

  • 18.

    Carrondo MA. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J. 2003;22:1959–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Canessa P, Larrondo LF. Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol. 2013;97:939–55.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275:161–203.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Docampo R, Moreno SNJ. Acidocalcisomes. Cell Calcium. 2011;50:113–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Tsednee M, Castruita M, Salomé PA, Sharma A, Lewis BE, Schmollinger SR, et al. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. J Biol Chem. 2019;294:17626–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Mojzeš P, Gao L, Ismagulova T, Pilátová J, Moudříková Š, Gorelova O, et al. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci USA. 2020;117:32722–30.

  • 24.

    Turner BL. Inositol phosphates in soil: Amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ, editors. Inositol phosphates: linking agriculture and the environment. 2007. Wallingford: CABI; 2007. p. 186–206.

  • 25.

    Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Otero A, Vincenzini M. Nostoc (Cyanophyceae) goes nude: Extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J Phycol. 2004;40:74–81.

    CAS 
    Article 

    Google Scholar 

  • 27.

    Wang J, Yu H-Q. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol. 2007;75:871–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Brangarí AC, Fernàndez-Garcia D, Sanchez-Vila X, Manzoni S. Ecological and soil hydraulic implications of microbial responses to stress—a modeling analysis. Adv Water Resour. 2018;116:178–94.

    Article 

    Google Scholar 

  • 29.

    Pal S, Manna A, Paul AK. Production of poly(β-hydroxybutyric acid) and exopolysaccharide by Azotobacter beijerinckii WDN-01. World J Microbiol Biotechnol. 1999;15:11–6.

    Article 

    Google Scholar 

  • 30.

    Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol Biochem. 2015;83:184–99.

    CAS 
    Article 

    Google Scholar 

  • 31.

    Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol. 2017;101:2203–16.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Wang JG, Bakken LR. Screening of soil bacteria for poly-β-hydroxybutyric acid production and its role in the survival of starvation. Micro Ecol. 1998;35:94–101.

    CAS 
    Article 

    Google Scholar 

  • 33.

    Hanzlíková A, Jandera A, Kunc F. Poly-3-hydroxybutyrate production and changes of bacterial community in the soil. Folia Microbiologica. 1985;30:58–64.

    Article 

    Google Scholar 

  • 34.

    Iwahara S, Miki S. Production of α-α-trehalose by a bacterium isolated from soil. Agric Biol Chem. 1988;52:867–8.

    CAS 

    Google Scholar 

  • 35.

    Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    López MF, Männer P, Willmann A, Hampp R, Nehls U. Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. N Phytol. 2007;174:389–98.

    Article 
    CAS 

    Google Scholar 

  • 37.

    Bünemann EK, Smernik RJ, Doolette AL, Marschner P, Stonor R, Wakelin SA, et al. Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biol Biochem. 2008;40:1908–15.

    Article 
    CAS 

    Google Scholar 

  • 38.

    Genet P, Prevost A, Pargney JC. Seasonal variations of symbiotic ultrastructure and relationships of two natural ectomycorrhizae of beech (Fagus sylvatica/Lactarius blennius var. viridis and Fagus sylvatica/Lactarius subdulcis). Trees. 2000;14:465–74.

    Article 

    Google Scholar 

  • 39.

    Frey B, Brunner I, Walther P, Scheidegger C, Zierold K. Element localization in ultrathin cryosections of high-pressure frozen ectomycorrhizal spruce roots. Plant Cell Environ. 1997;20:929–37.

    CAS 
    Article 

    Google Scholar 

  • 40.

    Hanzlíkova A, Jandera A, Kunc F. Formation of poly-3-hydroxybutyrate by a soil microbial community during batch and heterocontinuous cultivation. Folia Microbiol. 1984;29:233–41.

    Article 

    Google Scholar 

  • 41.

    Mason-Jones K, Banfield CC, Dippold MA. Compound‐specific 13C stable isotope probing confirms synthesis of polyhydroxybutyrate by soil bacteria. Rapid Commun Mass Spectrom. 2019;33:795–802.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem. 2002;34:1299–307.

    CAS 
    Article 

    Google Scholar 

  • 43.

    White PM, Potter TL, Strickland TC. Pressurized liquid extraction of soil microbial phospholipid and neutral lipid fatty acids. J Agric Food Chem. 2009;57:7171–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems: Global soil microbial biomass C, N and P. Glob Ecol Biogeogr. 2013;22:737–49.

    Article 

    Google Scholar 

  • 45.

    Bååth E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Micro Ecol. 2003;45:373–83.

    Article 
    CAS 

    Google Scholar 

  • 46.

    Soliman AH, Radwan SS. Degradation of sterols, triacylglycerol, and phospholipids by soil microorganisms. Zbl Bakt II Abt. 1981;136:420–6.

    CAS 

    Google Scholar 

  • 47.

    Diakhaté S, Gueye M, Chevallier T, Diallo NH, Assigbetse K, Abadie J, et al. Soil microbial functional capacity and diversity in a millet-shrub intercropping system of semi-arid Senegal. J Arid Environ. 2016;129:71–9.

    Article 

    Google Scholar 

  • 48.

    Bölscher T, Wadsö L, Börjesson G, Herrmann AM. Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. Biol Fertil Soils. 2016;52:547–59.

    Article 
    CAS 

    Google Scholar 

  • 49.

    Mason-Jones K, Schmücker N, Kuzyakov Y. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol Biochem. 2018;124:38–46.

    CAS 
    Article 

    Google Scholar 

  • 50.

    Muhammadi S, Afzal M, Hameed S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev. 2015;8:56–77.

    Article 
    CAS 

    Google Scholar 

  • 51.

    Jose NA, Lau R, Swenson TL, Klitgord N, Garcia-Pichel F, Bowen BP, et al. Flux balance modeling to predict bacterial survival during pulsed-activity events. Biogeosciences. 2018;15:2219–29.

    CAS 
    Article 

    Google Scholar 

  • 52.

    Medeiros PM, Fernandes MF, Dick RP, Simoneit BRT. Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere. 2006;65:832–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Žifčáková L, Větrovský T, Lombard V, Henrissat B, Howe A, Baldrian P. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 2017;5:1–12.

    Article 

    Google Scholar 

  • 54.

    Ratcliff WC, Denison RF. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr Biol. 2010;20:1740–4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Choi J, Kim S-H. A genome tree of life for the fungi kingdom. Proc Natl Acad Sci USA. 2017;114:9391–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Jun S-R, Sims GE, Wu GA, Kim S-H. Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proc Natl Acad Sci USA. 2010;107:133–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Elbahloul Y, Krehenbrink M, Reichelt R, Steinbuchel A. Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus strain ADP1. Appl Environ Microbiol. 2005;71:858–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Lillie SH, Pringle JR. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980;143:1384–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Hall KD, Guo J. Obesity energetics: Body weight regulation and the effects of diet composition. Gastroenterology. 2017;152:1718–27.e3.

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine? Tree Physiol. 2012;32:764–75.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Varpe Ø, Ejsmond MJ. Trade-offs between storage and survival affect diapause timing in capital breeders. Evol Ecol. 2018;32:623–41.

    Article 

    Google Scholar 

  • 63.

    Heilmeier H, Freund M, Steinlein T, Schulze E-D, Monson RK. The influence of nitrogen availability on carbon and nitrogen storage in the biennial Cirsium vulgare (Savi) Ten. I. Storage capacity in relation to resource acquisition, allocation and recycling. Plant Cell Environ. 1994;17:1125–31.

    CAS 
    Article 

    Google Scholar 

  • 64.

    Pond CM. Ecology of storage. In: Levin SA, editor. Encyclopedia of biodiversity, 2nd ed. Amsterdam: Academic Press; 2013. p. 23–38.

  • 65.

    McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:1–18.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 66.

    Donald J, Pannabecker TL. Osmoregulation in desert-adapted mammals. In: Hyndman KA, Pannabecker TL, editors. Sodium and water homeostasis. New York: Springer New York; 2015. p. 191–211.

  • 67.

    Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol. 2016;225:48–56.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell. 2015;163:340–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Jenni-Eiermann S, Jenni L. Fasting in birds: general patterns and the special case of endurance flight. In: McCue MD, editor. Comparative physiology of fasting, starvation, and food limitation. 2012. Berlin: Springer; 2012. p. 171–92.

  • 70.

    Fischer B, Dieckmann U, Taborsky B. When to store energy in a stochastic environment. Evolution. 2011;65:1221–32.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Bonnet X, Bradshaw D, Shine R. Capital versus income breeding: An ectothermic perspective. Oikos. 1998;83:333.

    Article 

    Google Scholar 

  • 72.

    de Mazancourt C, Schwartz MW. Starve a competitor: evolution of luxury consumption as a competitive strategy. Theor Ecol. 2012;13:37–49.

    Article 

    Google Scholar 

  • 73.

    Ejsmond MJ, Varpe Ø, Czarnoleski M, Kozłowski J. Seasonality in offspring value and trade-offs with growth explain capital breeding. Am Nat. 2015;186:E111–25.

    Article 

    Google Scholar 

  • 74.

    Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. 2017;4:55.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 2010;34:952–85.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Doi Y, Kawaguchi Y, Koyama N, Nakamura S, Hiramitsu M, Yoshida Y, et al. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol Lett. 1992;103:103–8.

    CAS 
    Article 

    Google Scholar 

  • 77.

    Alvarez AHM, Kalscheuer R, Steinbüchel A. Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Lipid. 1997;99:239–46.

    CAS 
    Article 

    Google Scholar 

  • 78.

    Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast. 1999;15:191–203.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Gebremariam SY, Beutel MW, Christian D, Hess TF. Research advances and challenges in the microbiology of enhanced biological phosphorus removal-A critical review. Water Environ Res. 2011;83:195–219.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004;86:807–15.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Matin A, Veldhuis C, Stegeman V, Veenhuis M. Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. J Gen Microbiol. 1979;112:349–55.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Chi Lam C, Schomburg D, et al. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: Highlights from a multi-level omics approach. Micro Cell Fact. 2012;11:34.

    CAS 
    Article 

    Google Scholar 

  • 83.

    Wilkinson JF, Munro ALS. The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium. In: Powell EO, Evans CGT, Strange RE, Tempest DW, editors. Microbial physiology and continuous culture, Proceedings of the Third International Symposium. Salisbury, United Kingdom: Her Majesty’s Stationery Office; 1967. p. 173–85.

  • 84.

    Alvarez HM, Mayer F, Fabritius D, Steinbüchel A. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol. 1996;165:377–86.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Orchard ED, Benitez-Nelson CR, Pellechia PJ, Lomas MW, Dyhrman ST. Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol Oceanogr. 2010;55:2161–9.

    CAS 
    Article 

    Google Scholar 

  • 86.

    Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G, Klein F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature. 2020;579:250–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Preiss J, Romeo T. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol. 1994;47:299–329.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Mackerras AH, de Chazal NM, Smith GD. Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. J Gen Microbiol. 1990;136:2057–65.

    CAS 
    Article 

    Google Scholar 

  • 89.

    Parnas H, Cohen D. The optimal strategy for the metabolism of reserve materials in micro-organisms. J Theor Biol. 1976;56:19–55.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 90.

    Dijkstra P, Salpas E, Fairbanks D, Miller EB, Hagerty SB, van Groenigen KJ, et al. High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis. Soil Biol Biochem. 2015;89:35–43.

    CAS 
    Article 

    Google Scholar 

  • 91.

    Empadinhas N, da Costa MS. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol. 2008;11:151–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Albi T, Serrano A. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol. 2016;32:27.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 93.

    Sekar K, Linker SM, Nguyen J, Grünhagen A, Stocker R, Sauer U. Bacterial glycogen provides short-term benefits in changing environments. Appl Environ Microbiol. 2020;86:e00049–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Silljé HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, et al. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol. 1999;181:396–400.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Jahid IK, Silva AJ, Benitez JA. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol. 2006;72:7043–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Ramírez-Trujillo JA, Dunn MF, Suárez-Rodríguez R, Hernández-Lucas I. The Sinorhizobium meliloti glyoxylate cycle enzyme isocitrate lyase (AceA) is required for the utilization of poly-β-hydroxybutyrate during carbon starvation. Ann Microbiol. 2016;66:921–4.

    Article 
    CAS 

    Google Scholar 

  • 97.

    Vagabov VM, Trilisenko LV, Kulaev IS. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae. Biochemistry. 2000;65:6.

    Google Scholar 

  • 98.

    Schimz K-L, Irrgang K, Overhoff B. Glycogen, a cytoplasmic reserve polysaccharide of Cellulomonas sp. (DSM20108): Its identification, carbon source-dependent accumulation, and degradation during starvation. FEMS Microbiol Lett. 1985;30:165–9.

    CAS 
    Article 

    Google Scholar 

  • 99.

    Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, et al. Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007;189:918–28.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 100.

    Busuioc M, Mackiewicz K, Buttaro BA, Piggot PJ. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J Bacteriol. 2009;191:7315–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Ruiz JA, Lopez NI, Fernandez RO, Mendez BS. Polyhydroxyalkanoate degradation Is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol. 2001;67:225–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 102.

    Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol. 2016;26:2862–72.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 103.

    Elbein AD. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13:17R–27R.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 104.

    Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour Technol. 2021;326:124767.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Ayub ND, Tribelli PM, López NI. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles. 2009;13:59–66.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 106.

    Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111:1169–94.

    Article 

    Google Scholar 

  • 107.

    Ho A, Kerckhof F-M, Luke C, Reim A, Krause S, Boon N, et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies: Functional traits of methane-oxidizing bacteria. Environ Microbiol Rep. 2013;5:335–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 108.

    Santillan E, Seshan H, Constancias F, Wuertz S. Trait‐based life‐history strategies explain succession scenario for complex bacterial communities under varying disturbance. Environ Microbiol. 2019;21:3751–64.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 109.

    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.

    Article 

    Google Scholar 

  • 110.

    Loreau M, de Mazancourt C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett. 2013;16:106–15.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 111.

    Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry. 2016;127:173–88.

    CAS 
    Article 

    Google Scholar 

  • 112.

    Manzoni S, Porporato A. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol Biochem. 2009;41:1355–79.

    CAS 
    Article 

    Google Scholar 

  • 113.

    Schultz P, Urban NR. Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: a modeling study. Ecol Model. 2008;210:1–14.

    CAS 
    Article 

    Google Scholar 

  • 114.

    Torres-Dorante LO, Claassen N, Steingrobe B, Olfs H-W. Polyphosphate determination in calcium acetate-lactate (CAL) extracts by an indirect colorimetric method. J Plant Nutr Soil Sci. 2004;167:701–3.

    CAS 
    Article 

    Google Scholar 

  • 115.

    Micić V, Köster J, Kruge MA, Engelen B, Hofmann T. Bacterial wax esters in recent fluvial sediments. Org Geochem. 2015;89–90:44–55.

    Article 
    CAS 

    Google Scholar 

  • 116.

    Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 2014;5:1–10.

    Article 

    Google Scholar 

  • 117.

    Op De Beeck M, Troein C, Siregar S, Gentile L, Abbondanza G, Peterson C, et al. Regulation of fungal decomposition at single-cell level. ISME J. 2020;14:896–905.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 118.

    Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol. 2019;25:3578–90.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 119.

    Ducklow H, Steinberg D, Buesseler K. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:50–8.

    Article 

    Google Scholar 

  • 120.

    Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly representing soil microbial processes in Earth system models: Soil microbes in Earth system models. Glob Biogeochem Cycles. 2015;29:1782–800.

    CAS 
    Article 

    Google Scholar 

  • 121.

    Schimel J, Weintraub MN. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem. 2003;35:549–63.

    CAS 
    Article 

    Google Scholar 

  • 122.

    Ni B-J, Fang F, Rittmann BE, Yu H-Q. Modeling microbial products in activated sludge under feast-famine conditions. Environ Sci Technol. 2009;43:2489–97.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 123.

    Godwin CM, Cotner JB. Stoichiometric flexibility in diverse aquatic heterotrophic bacteria is coupled to differences in cellular phosphorus quotas. Front Microbiol 2015;6:1–15.

    Article 

    Google Scholar 

  • 124.

    Camenzind T, Philipp Grenz K, Lehmann J, Rillig MC. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol Lett. 2021;24:208–18.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 125.

    Fatichi S, Manzoni S, Or D, Paschalis A. A mechanistic model of microbially mediated soil biogeochemical processes: a reality check. Glob Biogeochem Cycles. 2019;33:620–48.

    CAS 
    Article 

    Google Scholar 

  • 126.

    Sistla SA, Rastetter EB, Schimel JP. Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe–plant–soil model. Ecol Monogr. 2014;84:151–70.

    Article 

    Google Scholar 

  • 127.

    Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I. Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots. Front Microbiol 2016;7:1–14.

    Article 

    Google Scholar 

  • 128.

    Lee ZM, Schmidt TM. Bacterial growth efficiency varies in soils under different land management practices. Soil Biol Biochem. 2014;69:282–90.

    CAS 
    Article 

    Google Scholar 

  • 129.

    Camenzind T, Lehmann A, Ahland J, Rumpel S, Rillig MC. Trait‐based approaches reveal fungal adaptations to nutrient‐limiting conditions. Environ Microbiol. 2020;22:3548–60.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 130.

    Manzoni S, Čapek P, Mooshammer M, Lindahl BD, Richter A, Šantrůčková H. Optimal metabolic regulation along resource stoichiometry gradients. Ecol Lett. 2017;20:1182–91.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 131.

    Tang J, Riley WJ. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat Clim Chang. 2015;5:5.

    CAS 
    Article 

    Google Scholar 

  • 132.

    Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, et al. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc. 2021;16:634–76.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 133.

    Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, et al. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol. 2009;75:2111–21.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 134.

    Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun. 2021;12:2009.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 135.

    Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. 2015;12:1091–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 136.

    Warren CR. Altitudinal transects reveal large differences in intact lipid composition among soils. Soil Res. 2021;59:644–59.

    CAS 
    Article 

    Google Scholar 

  • 137.

    Wilkinson J. The problem of energy-storage compounds in bacteria. Exp Cell Res. 1959;7:111–30.

    Article 

    Google Scholar 

  • 138.

    Nickels JS, King JD, White DC. Poly-β-hydroxybutyrate accumulation as a measure of unbalanced growth of the estuarine detrital microbiota. Appl Environ Microbiol. 1979;37:459–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 139.

    Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma. 2012;249:541–85.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 140.

    Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie. 2016;120:28–39.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 141.

    Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol. 2017;37:24–38.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 142.

    Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, et al. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol. 2020;104:4795–810.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 143.

    Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 144.

    Wang L, Wang M, Wise MJ, Liu Q, Yang T, Zhu Z, et al. Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria. World J Microbiol Biotechnol. 2020;36:14.

    PubMed 
    Article 

    Google Scholar 

  • 145.

    Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation: Trehalose metabolism in bacteria. Micro Biotechnol. 2013;6:493–502.

    Article 
    CAS 

    Google Scholar 

  • 146.

    Kalscheuer R. Genetics of wax ester and triacylglycerol biosynthesis in bacteria. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 527–35.

  • 147.

    Rao NN, Gómez-García MR, Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem. 2009;78:605–47.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 148.

    Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet. 2021;67:331–46.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 149.

    Füser G, Steinbüchel A. Analysis of genome sequences for genes of cyanophycin metabolism: Identifying putative cyanophycin metabolizing prokaryotes. Macromol Biosci. 2007;7:278–96.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 150.

    Watzer B, Forchhammer K. Cyanophycin: a nitrogen-rich reserve polymer. In: Tiwari A, editor. Cyanobacteria. London: InTech; 2018.


  • Source: Ecology - nature.com

    The language of change

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya