in

Observed increases in extreme fire weather driven by atmospheric humidity and temperature

  • 1.

    Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships (2018). Glob. Change Biol. 24, 5164–5175 (2018).

    Google Scholar 

  • 2.

    Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916-2003. Ecol. Appl. 19, 1003–1021 (2009).

    Google Scholar 

  • 3.

    Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).

    Google Scholar 

  • 4.

    Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).

    Google Scholar 

  • 5.

    Hanes, C. C. et al. Fire-regime changes in Canada over the last half century. Can. J. Res. 49, 256–269 (2019).

    Google Scholar 

  • 6.

    Amiro, B. D. et al. Fire weather index system components of large fires in the Canadian boreal forest. Int. J. Wildland Fire 13, 391–400 (2004).

    Google Scholar 

  • 7.

    Flannigan, M. D., Krawchuck, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).

    Google Scholar 

  • 8.

    Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).

    Google Scholar 

  • 9.

    Coogan, S. C. P., Robinne, F.-N., Jain, P. & Flannigan, M. D. Scientists’ warning on wildfire—a Canadian perspective. Can. J. Res. 49, 1015–1023 (2019).

    Google Scholar 

  • 10.

    Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    Google Scholar 

  • 11.

    Van Wagner, C. E. et al. Development and Structure of the Canadian Forest Fire Weather Index System (Canadian Forestry Service Headquarters, 1987); https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/camia-et-al.-2008-past

  • 12.

    Flannigan, M. D. & Harrington, J. B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953-80). J. Appl. Meteorol. 27, 441–452 (1988).

    Google Scholar 

  • 13.

    Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).

    CAS 

    Google Scholar 

  • 14.

    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    CAS 

    Google Scholar 

  • 15.

    Touma, D., Stevenson, S., Lehner, F. & Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 12, 212 (2021).

  • 16.

    Clarke, H. G., Smith, P. L. & Pitman, A. J. Regional signatures of future fire weather over eastern Australia from global climate models. Int. J. Wildland Fire 20, 550–562 (2011).

    Google Scholar 

  • 17.

    Bedia, J. et al. Sensitivity of fire weather index to different reanalysis products in the Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 12, 699–708 (2012).

    Google Scholar 

  • 18.

    Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009–1020 (2017).

    Google Scholar 

  • 19.

    Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).

    Google Scholar 

  • 20.

    Zhao, F., Liu, Y. & Shu, L. Change in the fire season pattern from bimodal to unimodal under climate change: the case of Daxing’anling in Northeast China. Agric. Meteorol. 291, 108075 (2020).

    Google Scholar 

  • 21.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  • 22.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    CAS 

    Google Scholar 

  • 23.

    Kirchmeier-Young, M. C., Gillet, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).

    Google Scholar 

  • 24.

    Pausas, J. G. & Ribeiro, E. The global-fire productivity relationship. Glob. Ecol. Biogeogr. 22, 728–736 (2013).

    Google Scholar 

  • 25.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).

    CAS 

    Google Scholar 

  • 26.

    Ziel, R. H. et al. A comparison of fire weather indices with MODIS fire days for the natural regions of Alaska. Forests 11, 516 (2020).

    Google Scholar 

  • 27.

    Giannaros, T. M., Kotroni, V. & Lagouvardos, K. Climatology and trend analysis (1987–2016) of fire weather in the Euro-Mediterranean. Int. J. Climatol. 41, E491–E508 (2021).

    Google Scholar 

  • 28.

    Harris, S. & Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE 14, e0222328 (2019).

    CAS 

    Google Scholar 

  • 29.

    Climate at a Glance (NOAA, 2021); https://www.ncdc.noaa.gov/cag/

  • 30.

    van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).

    Google Scholar 

  • 31.

    Barbero, R., Abatzoglou, J. T., Pimont, F., Ruffault, J. & Curt, T. Attributing increases in fire weather to anthropogenic climate change over France. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00104 (2020).

  • 32.

    Byrne, M. P. & O’Gorman, P. A. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J. Clim. 29, 9045–9061 (2016).

    Google Scholar 

  • 33.

    Willett, K. M., Jones, P. D., Gillett, N. P. & Thorne, P. W. Recent changes in surface humidity: development of the HadCRUH dataset. J. Clim. 21, 5364–5383 (2008).

    Google Scholar 

  • 34.

    Matsoukas, C. et al. Potential evaporation trends over land between 1983-2008: driven by radiative fluxes or vapour-pressure deficit? Atmos. Chem. Phys. 11, 7601–7616 (2011).

    CAS 

    Google Scholar 

  • 35.

    Grotjahn, R. & Huynh, J. Contiguous US summer maximum temperature and heat stress trends in CRU and NOAA climate division data plus comparisons to reanalyses. Sci. Rep. 8, 11146 (2018).

    CAS 

    Google Scholar 

  • 36.

    Denson, E., Wasko, C. & Peel, M. C. Decreases in relative humidity across Australia. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0aca (2021).

  • 37.

    Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9, 15331 (2019).

    Google Scholar 

  • 38.

    Findell, K. L. et al. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 8, 989 (2017).

  • 39.

    McKinnon, K. A., Poppick, A. & Simpson, I. R. Hot extremes have become drier in the United States Southwest. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01076-9 (2021).

  • 40.

    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Google Scholar 

  • 41.

    Mishra, V. et al. Moist heat stress extremes in India enhanced by irrigation. Nat. Geosci. 13, 722–728 (2020).

    CAS 

    Google Scholar 

  • 42.

    Dong, B. & Dai, A. The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Clim. Dyn. 45, 2667–2681 (2015).

    Google Scholar 

  • 43.

    Fischer, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).

    Google Scholar 

  • 44.

    Tymstra C., Flannigan M. D., Stocks B. J., Cai X. & Morrison K. Wildfire management in Canada: review, challenges and opportunities. Prog. Disaster Sci. https://doi.org/10.1016/j.pdisas.2019.100045 (2020).

  • 45.

    Flannigan, M. D., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549–560 (2009).

    Google Scholar 

  • 46.

    Chen, Y. et al. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01011-y (2021).

  • 47.

    Hope, E. S., McKenney, D. W., Pedlar, J. H., Stocks, B. J. & Gauthier, S. Wildfire suppression costs for Canada under a changing climate. PLoS ONE 11, e0157425 (2016).

    Google Scholar 

  • 48.

    Podur, J. & Wotton, B. M. Will climate change overwhelm fire management capacity? Ecol. Modell. 221, 1301–1309 (2010).

    Google Scholar 

  • 49.

    Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A. & Westerling, A. L. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).

    Google Scholar 

  • 50.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Google Scholar 

  • 51.

    Copernicus Climate Change Service Data Store (Copernicus Climate Change Service, accessed 4 March 2020); https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation

  • 52.

    Ramon, J., Lledo, L., Torralba, V., Soret, A. & Doblas-Reyes, F. J. What global reanalysis best represents near-surface winds? Q. J. R. Meteorol. Soc. 145, 3236–3251 (2019).

    Google Scholar 

  • 53.

    Beck, H. E. et al. Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 23, 207–224 (2019).

    Google Scholar 

  • 54.

    Tarek, M., Brissette, F. P. & Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 24, 2527–2544 (2020).

    Google Scholar 

  • 55.

    Torralba, V., Doblas-Reyes, F. J. & Gonzalez-Reviriego, N. Uncertainty in recent near-surface wind speed trends: a global reanalysis intercomparison. Environ. Res. Lett. 12, 114019 (2017).

    Google Scholar 

  • 56.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Google Scholar 

  • 57.

    Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552 (2019).

    Google Scholar 

  • 58.

    Wotton, B. M. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ. Ecol. Stat. 16, 107–131 (2009).

    CAS 

    Google Scholar 

  • 59.

    Field, R. D. et al. Development of a global fire weather database. Nat. Hazards Earth Syst. Sci. 15, 1407–1423 (2015).

    Google Scholar 

  • 60.

    Bedia, J. et al. Global patterns in the sensitivity of burned area to fire weather: implications for climate change. Agric. Meteorol. 214–215, 369–379 (2015).

    Google Scholar 

  • 61.

    McElhinny, M., Beckers, J. F., Hanes, C., Flannigan, M. & Jain, P. A high-resolution reanalysis of global fire weather from 1979 to 2018 – overwintering the Drought Code. Earth Syst. Sci. Data 12, 1823–1833 (2020).

    Google Scholar 

  • 62.

    Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. Forestry Chron. 69, 187–192 (1993).

    Google Scholar 

  • 63.

    Sedano, F. & Randerson, J. T. Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems. Biogeosciences 11, 1309–1353 (2014).

    Google Scholar 

  • 64.

    Williams, P. A. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2014).

    Google Scholar 

  • 65.

    Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).

    Google Scholar 

  • 66.

    Mueller, S. E. et al. Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. For. Ecol. Manage. 460, 117861 (2020).

    Google Scholar 

  • 67.

    Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 35, 601–609 (1996).

    Google Scholar 

  • 68.

    Knauer, J., El-Madany, T. S., Zaehle, S. & Migliavacca, M. Bigleaf—an R package for the calculation of physical and physiological ecosystem properties from eddy covariance data. PLoS ONE 13, e0201114 (2018).

    Google Scholar 

  • 69.

    Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    Google Scholar 

  • 70.

    Loveland, T. R. & Belward, A. S. The IGBP-DIS global 1 km land cover data set, DISCover: first results. Int. J. Remote Sens. 18, 3291–3295 (1997).

    Google Scholar 

  • 71.

    Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    Google Scholar 

  • 72.

    Kendall, M. G. Rank Correlation Methods (Griffin, 1975).

    Google Scholar 

  • 73.

    Theil, H. A rank-invariant method of linear and polynomial regression analysis. I, II, III. Nederl. Akad. Wetensch. Proc. 53, part I: 386–392; part II: 521–525; part III: 1397–1412 (1950).

  • 74.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Google Scholar 

  • 75.

    Yue, S., Pilon, P. & Phinney, B. Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol. Sci. J. 48, 51–63 (2003).

    Google Scholar 

  • 76.

    Wilks, D. S. On ‘field significance’ and the false discovery rate. J. Appl. Meteorol. Climatol. 45, 1181–1189 (2006).

    Google Scholar 

  • 77.

    Wilks, D. ‘The stippling shows statistically significant grid points’: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Am. Meteorol. Soc. 97, 2263–2273 (2016).

    Google Scholar 

  • 78.

    Libiseller, C. & Grimvall, A. Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics 13, 71–84 (2002).

    CAS 

    Google Scholar 

  • 79.

    Mediero, L., Santillán, D., Garrote, L. & Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. J. Hydrol. 517, 1072–1088 (2014).

    Google Scholar 

  • 80.

    Dowdy, A. J., Mills, G. A., Finkele, K. & de Groot, W. Index sensitivity analysis applied to the Canadian Forest Fire Weather Index and the McArthur Forest Fire Danger Index. Meteorol. Appl. 17, 298–312 (2010).

    Google Scholar 

  • 81.

    Millard, S. P. EnvStats: An R Package for Environmental Statistics (Springer, 2013).

  • 82.

    Pohlert, T. trend: Non-Parametric Trend Tests and Change-Point Detection. R package v.1.1.4. https://CRAN.R-project.org/package=trend (2020).


  • Source: Ecology - nature.com

    Spatial scale and the synchrony of ecological disruption

    Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida