Reduced deforestation and degradation in Indigenous Lands pan-tropically

  • 1.

    Weisse, M. & Goldman, E. D. We Lost a Football Pitch of Primary Rainforest Every 6 Seconds in 2019 (World Resources Institute, 2020);

  • 2.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).


    Google Scholar 

  • 3.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).


    Google Scholar 

  • 4.

    State of the World’s Indigenous Peoples: Rights to Lands, Territories and Resources (UN, 2021).

  • 5.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).


    Google Scholar 

  • 6.

    Larsen, P. B. et al. Understanding and responding to the environmental human rights defenders crisis: the case for conservation action. Conserv. Lett. 14, e12777 (2020).

    Google Scholar 

  • 7.

    Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).

    Google Scholar 

  • 8.

    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).


    Google Scholar 

  • 9.

    Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).

    Google Scholar 

  • 10.

    Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3 (Convention on Biological Diversity, 2020).

  • 11.

    NGO Concerns Over the Proposed 30% Target for Protected Areas and Absence of Safeguards for Indigenous Peoples and Local Communities (Rainforest Foundation UK, 2021).

  • 12.

    Reyes-García, V. et al. Recognizing Indigenous Peoples’ and local communities’ rights and agency in the post-2020 Biodiversity Agenda. Ambio (2021).

  • 13.

    Territories of Life: 2021 Report 52 (ICCA Consortium, 2021);

  • 14.

    Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Google Scholar 

  • 15.

    Fa, J. E. et al. Importance of Indigenous Peoples’ lands for the conservation of intact forest landscapes. Front. Ecol. Environ. 18, 135–140 (2020).

    Google Scholar 

  • 16.

    Vergara-Asenjo, G. & Potvin, C. Forest protection and tenure status: the key role of indigenous peoples and protected areas in Panama. Glob. Environ. Change 28, 205–215 (2014).

    Google Scholar 

  • 17.

    Blackman, A. & Veit, P. Titled Amazon indigenous communities cut forest carbon emissions. Ecol. Econ. 153, 56–67 (2018).

    Google Scholar 

  • 18.

    Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).


    Google Scholar 

  • 19.

    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).


    Google Scholar 

  • 20.

    Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).

    Google Scholar 

  • 21.

    Jusys, T. Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon. PLoS ONE 13, e0195900 (2018).

    Google Scholar 

  • 22.

    State of the World’s Indigenous Peoples (UN, 2009).

  • 23.

    Jackson, J. E. & Warren, K. B. Indigenous movements in Latin America, 1992–2004: controversies, ironies, new directions. Annu. Rev. Anthropol. 34, 549–573 (2005).

    Google Scholar 

  • 24.

    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Google Scholar 

  • 25.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).


    Google Scholar 

  • 26.

    Stuart, E. A. & Rubin, D. B. in Best Practices in Quantitative Methods (ed. Osborne, J.) 155–176 (SAGE Publications, 2008).

  • 27.

    Pfaff, A., Robalino, J., Lima, E., Sandoval, C. & Herrera, L. D. Governance, location and avoided deforestation from protected areas: greater restrictions can have lower impact, due to differences in location. World Dev. 55, 7–20 (2014).

    Google Scholar 

  • 28.

    Leberger, R., Rosa, I. M. D., Guerra, C. A., Wolf, F. & Pereira, H. M. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv. 241, 108299 (2020).

    Google Scholar 

  • 29.

    Borrini-Feyerabend, G. et al. Governance of Protected Areas: From Understanding to Action (IUCN, 2013).

  • 30.

    Who Owns the World’s Land? A Global Baseline of Formally Recognized Indigenous and Community Land Rights (Rights and Resources Initiative, 2015);

  • 31.

    Dubertret, F. & Alden Wily, L. Percent of Indigenous and Community Lands (Landmark, 2015).

  • 32.

    Under the Cover of COVID: New Laws in Asia Favor Business at the Cost of Indigenous Peoples’ and Local Communities’ Land and Territorial Rights (Rights and Resources Initiative, 2020).

  • 33.

    Domínguez, L. & Luoma, C. Decolonising conservation policy: how colonial land and conservation ideologies persist and perpetuate indigenous injustices at the expense of the environment. Land 9, 65 (2020).

    Google Scholar 

  • 34.

    Pyhälä, A., Orozco, A. O. & Counsell, S. Protected Areas in the Congo Basin: Failing both people and biodiversity? (FAO, 2016).

  • 35.

    Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).

    Google Scholar 

  • 36.

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).


    Google Scholar 

  • 37.

    Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).

    Google Scholar 

  • 38.

    Milodowski, D. T. et al. The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo. J. Appl. Ecol. 58, 1764–1775 (2021).

    Google Scholar 

  • 39.

    Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17, e3000247 (2019).

    Google Scholar 

  • 40.

    Miettinen, J., Stibig, H.-J. & Achard, F. Remote sensing of forest degradation in Southeast Asia—aiming for a regional view through 5–30 m satellite data. Glob. Ecol. Conserv. 2, 24–36 (2014).

    Google Scholar 

  • 41.

    Yuliani, E. L. et al. Keeping the land: indigenous communities’ struggle over land use and sustainable forest management in Kalimantan, Indonesia. Ecol. Soc. 23, art49 (2018).

    Google Scholar 

  • 42.

    Berkes, F. Sacred Ecology (Routledge, 2017).

  • 43.

    Sheil, D., Boissière, M. & Beaudoin, G. Unseen sentinels: local monitoring and control in conservation’s blind spots. Ecol. Soc. 20, 39 (2015).

    Google Scholar 

  • 44.

    Sasaoka, M. & Laumonier, Y. Suitability of local resource management practices based on supernatural enforcement mechanisms in the local social-cultural context. Ecol. Soc. 17, 6 (2012).

    Google Scholar 

  • 45.

    Asante, E. A., Ababio, S. & Boadu, K. B. The use of indigenous cultural practices by the Ashantis for the conservation of forests in Ghana. SAGE Open 7, 215824401668761 (2017).

    Google Scholar 

  • 46.

    Schwartzman, S. et al. The natural and social history of the indigenous lands and protected areas corridor of the Xingu River basin. Philos. Trans. R. Soc. B 368, 20120164 (2013).

    Google Scholar 

  • 47.

    Hayes, T. M. & Murtinho, F. Are indigenous forest reserves sustainable? An analysis of present and future land-use trends in Bosawas, Nicaragua. Int. J. Sustain. Dev. World Ecol. 15, 497–511 (2008).

    Google Scholar 

  • 48.

    Tellman, B. et al. Illicit drivers of land use change: narcotrafficking and forest loss in central America. Glob. Environ. Change 63, 102092 (2020).

    Google Scholar 

  • 49.

    Bryan, J. For Nicaragua’s indigenous communities, land rights in name only: delineating boundaries among indigenous and black communities in eastern Nicaragua was supposed to guaranteed their land rights. Instead, it did the opposite. NACLA Rep. Am. 51, 55–64 (2019).

    Google Scholar 

  • 50.

    Seymour, F., La Vina, T. & Hite, K. Evidence Linking Community-level Tenure and Forest Condition: An Annotated Bibliography (Climate and Land Use Alliance, 2014).

  • 51.

    Tseng, T.-W. J. et al. Influence of land tenure interventions on human well-being and environmental outcomes. Nat. Sustain. 4, 242–251 (2021).

    Google Scholar 

  • 52.

    Robinson, B. E. et al. Incorporating land tenure security into conservation: conservation and land tenure security. Conserv. Lett. 11, e12383 (2018).

    Google Scholar 

  • 53.

    Smith, D. A., Holland, M. B., Michon, A., Ibáñez, A. & Herrera, F. The hidden layer of indigenous land tenure: informal forest ownership and its implications for forest use and conservation in Panama’s largest collective territory. Int. For. Rev. 19, 478–494 (2017).

    Google Scholar 

  • 54.

    Larson, A. M. & Springer, J. Recognition and Respect for Tenure Rights (IUCN, CEESP, CIFOR, 2016).

  • 55.

    Arizona, Y., Wicaksono, M. T. & Vel, J. The role of indigeneity NGOs in the legal recognition of adat communities and customary forests in Indonesia. Asia Pac. J. Anthropol. 20, 487–506 (2019).

    Google Scholar 

  • 56.

    Malavasi, M. The map of biodiversity mapping. Biol. Conserv. 252, 108843 (2020).

    Google Scholar 

  • 57.

    Witter, R. & Satterfield, T. The ebb and flow of indigenous rights recognitions in conservation policy: indigenous rights recognitions in conservation policy. Dev. Change 50, 1083–1108 (2019).

    Google Scholar 

  • 58.

    Dutta, A. et al. Response to a “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2021).

    Google Scholar 

  • 59.

    Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).


    Google Scholar 

  • 60.

    Bebbington, A. J. et al. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).


    Google Scholar 

  • 61.

    Johnson, C. J., Venter, O., Ray, J. C. & Watson, J. E. M. Growth‐inducing infrastructure represents transformative yet ignored keystone environmental decisions. Conserv. Lett. (2020).

  • 62.

    Davis, K. F., Yu, K., Rulli, M. C., Pichdara, L. & D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 8, 772–775 (2015).


    Google Scholar 

  • 63.

    Conigliani, C., Cuffaro, N. & D’Agostino, G. Large-scale land investments and forests in Africa. Land Use Policy 75, 651–660 (2018).

    Google Scholar 

  • 64.

    Global Land Analysis & Discovery. Global 2010 Tree Cover (30m) (Department of Geographical Sciences, Univ. Maryland, 2013).

  • 65.

    Global Forest Watch. Tree Cover Loss version 1.6 (World Resources Institute, 2019).

  • 66.

    Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).


    Google Scholar 

  • 67.

    Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, accessed January 2020;

  • 68.

    Hanson, J. O. wdpar: Interface to the world database on protected areas (CRAN, 2020);

  • 69.

    Global Forest Watch. Spatial Database of Planted Trees (World Resources Institute, data aaccessed May 2021).

  • 70.

    Transparent World & Global Forest Watch. Tree Plantations (World Resources Institute, date accessed May 2021).

  • 71.

    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).


    Google Scholar 

  • 72.

    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Google Scholar 

  • 73.

    Global Forest Watch. Tree Cover 2000 version 1.2 (World Resources Institute, 2015).

  • 74.

    Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    Google Scholar 

  • 75.

    Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 266 (2019).

    Google Scholar 

  • 76.

    Global Roads Open Access Data Set Version 1 (gROADSv1) (1980–2010) (NASA SEDAC, 2013).

  • 77.

    Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 170001 (2017).

    Google Scholar 

  • 78.

    GADM Database of Global Administrative Areas version 3.6 (FAO, 2018).

  • 79.

    Ho, D., Imai, K., King, G. & Stuart, E. matchIt: Nonparametric preprocessing for parametric causal inference (CRAN, 2018);

  • 80.

    Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation (CRAN, 2019);

  • Source: Ecology -

    Spatial scale and the synchrony of ecological disruption

    Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida