in

Past landscape structure drives the functional assemblages of plants and birds

  • 1.

    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    PubMed  Article  Google Scholar 

  • 2.

    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes: Heterogeneity and biodiversity. Ecol. Lett. 14, 101–112 (2011).

    PubMed  Article  Google Scholar 

  • 3.

    Rundlöf, M., Nilsson, H. & Smith, H. G. Interacting effects of farming practice and landscape context on bumble bees. Biol. Conserv. 141, 417–426 (2008).

    Article  Google Scholar 

  • 4.

    Wamser, S., Diekötter, T., Boldt, L., Wolters, V. & Dauber, J. Trait-specific effects of habitat isolation on carabid species richness and community composition in managed grasslands: Effects of habitat isolation on carabid beetles. Insect Conser. Divers. 5, 9–18 (2012).

    Article  Google Scholar 

  • 5.

    Sonnier, G., Jamoneau, A. & Decocq, G. Evidence for a direct negative effect of habitat fragmentation on forest herb functional diversity. Landsc. Ecol. 29, 857–866 (2014).

    Article  Google Scholar 

  • 6.

    Wilcove, D. S. & McLellan, C. H. Habitat fragmentation in the temperate zone. Conserv. Biol. 1, 237–256 (1986).

    Google Scholar 

  • 7.

    Wilcox, B. A. & Murphy, D. D. Conservation strategy: The effects of fragmentation on extinction. Am. Nat. 125, 879–887 (1985).

    Article  Google Scholar 

  • 8.

    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology: The metacommunity concept. Ecol. Lett. 7, 601–613 (2004).

    Article  Google Scholar 

  • 9.

    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Article  Google Scholar 

  • 10.

    Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity?. Biol. Conserv. 226, 9–15 (2018).

    Article  Google Scholar 

  • 11.

    Fahrig, L. et al. Is habitat fragmentation bad for biodiversity?. Biol. Conserv. 230, 179–186 (2019).

    Article  Google Scholar 

  • 12.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Perović, D. et al. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 52, 505–513 (2015).

    Article  Google Scholar 

  • 14.

    Concepción, E. D. et al. Contrasting trait assembly patterns in plant and bird communities along environmental and human-induced land-use gradients. Ecography 40, 753–763 (2017).

    Article  Google Scholar 

  • 15.

    Rocha-Santos, L. et al. The loss of functional diversity: A detrimental influence of landscape-scale deforestation on tree reproductive traits. J. Ecol. 108, 212–223 (2019).

    Article  Google Scholar 

  • 16.

    Provost, G. L. et al. Land-use history impacts functional diversity across multiple trophic groups. PNAS 117, 1573–1579 (2020).

    PubMed  Article  CAS  Google Scholar 

  • 17.

    Solé-Senan, X. O., Juárez-Escario, A., Robleño, I., Conesa, J. A. & Recasens, J. Using the response-effect trait framework to disentangle the effects of agricultural intensification on the provision of ecosystem services by Mediterranean arable plants. Agric. Ecosyst. Environ. 247, 255–264 (2017).

    Article  Google Scholar 

  • 18.

    Grime, J. P. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J. Veg. Sci. 17, 255–260 (2006).

    Article  Google Scholar 

  • 19.

    Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    Article  Google Scholar 

  • 20.

    de Bello, F. et al. Evidence for scale- and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J. Ecol. 101, 1237–1244 (2013).

    Article  Google Scholar 

  • 21.

    Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies?. Proc. R. Soc. B 283, 20152434 (2016).

    PubMed  Article  Google Scholar 

  • 22.

    de Bello, F. et al. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J. Veg. Sci. 20, 475–486 (2009).

    Article  Google Scholar 

  • 23.

    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules: Functional diversity measures. Funct. Ecol. 24, 867–876 (2010).

    Article  Google Scholar 

  • 24.

    Shmida, A. & Wilson, M. V. Biological determinants of species diversity. J. Biogeogr. 12, 1–20 (1985).

    Article  Google Scholar 

  • 25.

    Baudry, J. & Papy, F. The role of landscape heterogeneity in the sustainability of cropping systems. In Crop Science: Progress and Prospects (eds Baudry, J. & Papy, F.) 243–249 (CABI Publishing, Oxfordshire, 2001).

    Google Scholar 

  • 26.

    Duflot, R., Georges, R., Ernoult, A., Aviron, S. & Burel, F. Landscape heterogeneity as an ecological filter of species traits. Acta Oecol. 56, 19–26 (2014).

    ADS  Article  Google Scholar 

  • 27.

    Cleland, E., Chuine, I., Menzel, A., Mooney, H. & Schwartz, M. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Hendrickx, F. et al. Pervasive effects of dispersal limitation on within- and among-community species richness in agricultural landscapes. Glob. Ecol. Biogeogr. 18, 607–616 (2009).

    Article  Google Scholar 

  • 29.

    Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169 (1992).

    Article  Google Scholar 

  • 30.

    Jonason, D. et al. Weak functional response to agricultural landscape homogenisation among plants, butterflies and birds. Ecography 40, 1221–1230 (2017).

    Article  Google Scholar 

  • 31.

    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    PubMed  Article  Google Scholar 

  • 32.

    Diamond, J. M. Biogeographic kinetics: estimation of relaxation times for avifaunas of Southwest Pacific Islands. Proc. Natl. Acad. Sci. 69, 3199–3203 (1972).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 33.

    Hanski, I. & Ovaskainen, O. Extinction debt at extinction threshold. Conserv. Biol. 16, 666–673 (2002).

    Article  Google Scholar 

  • 34.

    Helm, A., Hanski, I. & Partel, M. Slow response of plant species richness to habitat loss and fragmentation. Ecol. Lett. 9, 72–77 (2005).

    Google Scholar 

  • 35.

    Sang, A., Teder, T., Helm, A. & Pärtel, M. Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol. Conserv. 143, 1405–1413 (2010).

    Article  Google Scholar 

  • 36.

    Lindborg, R. Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J. Ecol. 95, 555–564 (2007).

    Article  Google Scholar 

  • 37.

    Saar, L., de Bello, F., Pärtel, M. & Helm, A. Trait assembly in grasslands depends on habitat history and spatial scale. Oecologia 184, 1–12 (2017).

    ADS  PubMed  Article  Google Scholar 

  • 38.

    Yamanaka, S., Akasaka, T., Yamaura, Y., Kaneko, M. & Nakamura, F. Time-lagged responses of indicator taxa to temporal landscape changes in agricultural landscapes. Ecol. Ind. 48, 593–598 (2015).

    Article  Google Scholar 

  • 39.

    Piqueray, J. et al. Plant species extinction debt in a temperate biodiversity hotspot: Community, species and functional traits approaches. Biol. Conserv. 144, 1619–1629 (2011).

    Article  Google Scholar 

  • 40.

    Barbaro, L. & van Halder, I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32, 321–333 (2009).

    Article  Google Scholar 

  • 41.

    Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article  Google Scholar 

  • 42.

    Lortie, C. J. et al. Rethinking plant community theory. Oikos 107, 433–438 (2004).

    Article  Google Scholar 

  • 43.

    Turnbull, L. A., Rees, M. & Crawley, M. J. Seed mass and the competition/colonization trade-off: A sowing experiment. J. Ecol. 87, 899–912 (1999).

    Article  Google Scholar 

  • 44.

    van Kleunen, M., Fischer, M. & Schmid, B. Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos 94, 515–524 (2001).

    Article  Google Scholar 

  • 45.

    Zambrano, J. et al. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: What do we know so far?. Oecologia 191, 505–518 (2019).

    ADS  PubMed  Article  Google Scholar 

  • 46.

    Atauri, J. A. & de Lucio, J. V. The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landsc. Ecol. 16, 147–159 (2001).

    Article  Google Scholar 

  • 47.

    Weibull, A.-C., Östman, Ö. & Granqvist, Å. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers. Conserv. 12, 1335–1355 (2003).

    Article  Google Scholar 

  • 48.

    Smith, H. G., Dänhardt, J., Lindström, Å. & Rundlöf, M. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds. Oecologia 162, 1071–1079 (2010).

    ADS  PubMed  Article  Google Scholar 

  • 49.

    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. PNAS 116, 16442–16447 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Redon, M., Bergès, L., Cordonnier, T. & Luque, S. Effects of increasing landscape heterogeneity on local plant species richness: How much is enough?. Landsc. Ecol. 29, 773–787 (2014).

    Article  Google Scholar 

  • 51.

    Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).

    Article  Google Scholar 

  • 52.

    MacDonald, Z. G., Anderson, I. D., Acorn, J. H. & Nielsen, S. E. The theory of island biogeography, the sample-area effect, and the habitat diversity hypothesis: Complementarity in a naturally fragmented landscape of lake islands. J. Biogeogr. 45, 2730–2743 (2018).

    Article  Google Scholar 

  • 53.

    Smart, S. M., Bunce, R. G. H., Firbank, L. G. & Coward, P. Do field boundaries act as refugia for grassland plant species diversity in intensively managed agricultural landscapes in Britain?. Agric. Ecosyst. Environ. 91, 73–87 (2002).

    Article  Google Scholar 

  • 54.

    Klimesova, J., Latzel, V., de Bello, F. & van Groenendael, J. M. Plant functional traits in studies of vegetation changes in response to grazing and mowing: Towards a use of more specific traits. Preslia 80, 245–253 (2008).

    Google Scholar 

  • 55.

    Fuller, R. J., Chamberlain, D. E., Burton, N. H. K. & Gough, S. J. Distributions of birds in lowland agricultural landscapes of England and Wales: How distinctive are bird communities of hedgerows and woodland?. Agric. Ecosyst. Environ. 84, 79–92 (2001).

    Article  Google Scholar 

  • 56.

    Hinsley, S. A. & Bellamy, P. E. The influence of hedge structure, management and landscape context on the value of hedgerows to birds: A review. J. Environ. Manage. 60, 33–49 (2000).

    Article  Google Scholar 

  • 57.

    Noh, J., Echeverría, C., Pauchard, A. & Cuenca, P. Extinction debt in a biodiversity hotspot: the case of the Chilean Winter Rainfall-Valdivian Forests. Landsc. Ecol. Eng. 15, 1–12 (2019).

    Article  Google Scholar 

  • 58.

    Saar, L., Takkis, K., Pärtel, M. & Helm, A. Which plant traits predict species loss in calcareous grasslands with extinction debt? Traits predicting extinctions in grasslands. Divers. Distrib. 18, 808–817 (2012).

    Article  Google Scholar 

  • 59.

    Figueiredo, L., Krauss, J., Steffan-Dewenter, I. & Cabral, J. S. Understanding extinction debts: Spatio–temporal scales, mechanisms and a roadmap for future research. Ecography 42, 1973–1990 (2019).

    Article  Google Scholar 

  • 60.

    Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels: Immediate and time-delayed biodiversity loss. Ecol. Lett. 13, 597–605 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    With, K. A. How fast do migratory songbirds have to adapt to keep pace with rapidly changing landscapes?. Landsc. Ecol 30, 1351–1361 (2015).

    Article  Google Scholar 

  • 62.

    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos 71, 355–366 (1994).

    Article  Google Scholar 

  • 63.

    Kavelaars, M. M. et al. Breeding habitat loss reveals limited foraging flexibility and increases foraging effort in a colonial breeding seabird. Mov. Ecol. 8, 45 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    van Zanten, B. T. et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 34, 309–325 (2014).

    Article  Google Scholar 

  • 65.

    Ramalho, C. E., Laliberté, E., Poot, P. & Hobbs, R. Effects of fragmentation on the plant functional composition and diversity of remnant woodlands in a young and rapidly expanding city. J. Veg. Sci. 29, 285–296 (2018).

    Article  Google Scholar 

  • 66.

    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).

    Article  Google Scholar 

  • 68.

    Damien, M. & Tougeron, K. Prey–predator phenological mismatch under climate change. Curr. Opin. Insect Sci. 35, 60–68 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Lalechère, E., Archaux, F. & Jabot, F. Relative importance of landscape and species characteristics on extinction debt, immigration credit and relaxation time after habitat turnover. Popul. Ecol. 61, 383–395 (2019).

    Article  Google Scholar 

  • 70.

    Ernoult, A. et al. Potential landscape drivers of biodiversity components in a flood plain: Past or present patterns?. Biol. Conserv. 127, 1–17 (2006).

    Article  Google Scholar 

  • 71.

    Meeus, J. H. A., Wijermans, M. P. & Vroom, M. J. Agricultural landscapes in Europe and their transformation. Landsc. Urban Plan. 18, 289–352 (1990).

    Article  Google Scholar 

  • 72.

    McGarigal, K., Cushman, S. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. (2012).

  • 73.

    Duflot, R., Aviron, S., Ernoult, A., Fahrig, L. & Burel, F. Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: A case study. Ecol. Res. 30, 75–83 (2015).

    Article  Google Scholar 

  • 74.

    Bibby, C. J., Burgess, N. D., Hill, D. A. & Mustoe, S. Bird Census Techniques (Elsevier, Amsterdam, 2000).

    Google Scholar 

  • 75.

    Kühn, I., Durka, W. & Klotz, S. BiolFlor: A new plant-trait database as a tool for plant invasion ecology: BiolFlor: A plant-trait database. Divers. Distrib. 10, 363–365 (2004).

    Article  Google Scholar 

  • 76.

    Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 96, 1266–1274 (2008).

    Article  Google Scholar 

  • 77.

    Duquet, M. Tout sur les Oiseaux d’Europe (Delachaux, Colombes, 2015).

    Google Scholar 

  • 78.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article  Google Scholar 

  • 79.

    Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).

    Article  Google Scholar 

  • 80.

    Sonnier, G., Shipley, B. & Navas, M.-L. Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. J. Veg. Sci. 21, 1014–1024 (2010).

    Article  Google Scholar 

  • 81.

    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, 2020).

    Google Scholar 

  • 82.

    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed  Article  Google Scholar 

  • 83.

    Blomberg, S. P. & Garland, T. Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods: Phylogenetic inertia. J. Evol. Biol. 15, 899–910 (2002).

    Article  Google Scholar 

  • 84.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 85.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 86.

    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  • 87.

    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).

    Article  Google Scholar 

  • 88.

    Bernard-Verdier, M. et al. Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol. 100, 1422–1433 (2012).

    Article  Google Scholar 

  • 89.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).

    Google Scholar 

  • 90.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).

    Google Scholar 

  • 91.

    Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100

    Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean