in

Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies

  • 1.

    Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Franklin, T. B., Linder, N., Russig, H., Thöny, B. & Mansuy, I. M. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS ONE 6, e21842. https://doi.org/10.1371/journal.pone.0021842 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    McCarthy, D. M. et al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 16, e2006497. https://doi.org/10.1371/journal.pbio.2006497 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Alfonso, S. et al. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. Aquat. Toxicol. 208, 29–38 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Anway, M. D., Memon, M. A., Uzumcu, M. & Skinner, M. K. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl. 27, 868–879 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Crews, D. et al. Transgenerational epigenetic imprints on mate preference. PNAS 104, 5942–5946 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Crews, D. et al. Epigenetic transgenerational inheritance of altered stress responses. PNAS 109, 9143–9148 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Gillette, R. et al. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 155, 3853–3866 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Gillette, R., Son, M. J., Ton, L., Gore, A. C. & Crews, D. Passing experiences on to future generations: endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics 13, 1106–1126 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Bhandari, R., Saal, F. & vom Tillitt, D. Transgenerational effects from early developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka Oryzias latipes. Sci. Rep. 5, 9303. https://doi.org/10.1038/srep09303 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Kidd, K. A. et al. Collapse of a fish population after exposure to a synthetic estrogen. PNAS 104, 8897–8901 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Skinner, M. K. et al. Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology. BMC Genom. 15, 377. https://doi.org/10.1186/1471-2164-15-377 (2014).

    Article  Google Scholar 

  • 14.

    Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Moisiadis, V. G. & Matthews, S. G. Glucocorticoids and fetal programming part 1: outcomes. Nature 10, 391–402 (2014).

    CAS  Google Scholar 

  • 16.

    Crean, A. J. & Bondurianksy, R. What is a paternal effect?. Trends Ecol. Evol. 29, 554–559 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Champagne, F. A. Interplay between paternal germline and maternal effects in shaping development: the overlooked importance of behavioural ecology. Funct. Ecol. 34, 401–413 (2019).

    Article  Google Scholar 

  • 18.

    Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Reznik, S. Y., Vaghina, N. P. & Voinovich, N. D. Multigenerational maternal effect on diapause induction in Trichogramma species (Hymenoptera: Trichogrammatidae). Biocontrol Sci. Technol. 22, 429–445 (2012).

    Article  Google Scholar 

  • 20.

    Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Shama, L. N. S. et al. Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evol. Appl. 9, 1096–1111 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Dunn, G. A. & Bale, T. L. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152, 2228–2236 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Skinner, M. K. et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 11, 228. https://doi.org/10.1186/1741-7015-11-228 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Zhu, J., Lee, K. P., Spencer, T. J., Biederman, J. & Bhide, P. G. Transgenerational transmission of hyperactivity in a mouse model of ADHD. J. Neurosci. 34, 2768–2773 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Leroux, S. et al. Embryonic environment and transgenerational effects in quail. Genet. Sel. Evol. 49, 14. https://doi.org/10.1186/s12711-017-0292-7 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Vera-Chang, M. N. et al. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. PNAS 115, E12435–E12442 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Sheriff, M. J., McMahon, E. K., Krebs, C. J. & Boonstra, R. Risk severity predicts generational impact. J. Zool. 296, 305–310 (2015).

    Article  Google Scholar 

  • 28.

    Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    He, N. et al. Parental life events cause behavioral difference among offspring: adult pre-gestational restraint stress reduces anxiety across generations. Sci. Rep. 6, 39497. https://doi.org/10.1038/srep39497 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Pentinat, T., Ramon-Krauel, M., Cebria, J., Diaz, R. & Jimenez-Chillaron, J. C. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151, 5617–5623 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. PNAS 111, 1873–1878 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Cropley, J. E. et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 5, 699–708 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Dunn, G. A., Morgan, C. P. & Bale, T. L. Sex-specificity in transgenerational epigenetic programming. Horm. Behav. 59, 290–295 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Glover, V. & Hill, J. Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: an evolutionary perspective. Physiol. Behav. 106, 736–740 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Saavedra-Rodríguez, L. & Feig, L. A. Chronic social instability induces anxiety and defective social interactions across generations. Biol. Psychiatry 73, 44–53 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Moisiadis, V. G., Constantinof, A., Kostaki, A., Szyf, M. & Matthews, S. G. Prenatal glucocorticoid exposure modifies endocrine function and behaviour for 3 generations following maternal and paternal transmission. Sci. Rep. 7, 11814. https://doi.org/10.1038/s41598-017-11635-w (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Hellmann, J. K., Carlson, E. R. & Bell, A. M. Sex-specific plasticity across generations II: grandpaternal effects are lineage specific and sex specific. J. Anim. Ecol. 89, 2800–2812 (2020).

    Article  Google Scholar 

  • 38.

    gene duplications and functional diversification in Craniates. Le Crom, S., Kapsimali, M., Barome, P-O. & Vernier, P. Dopamine receptors for every species. J. Struct. Funct. Genomics 3, 161–176 (2003).

    Article  Google Scholar 

  • 39.

    Melis, M. R. & Argiolas, A. Dopamine and sexual behavior. Neurosci. Biobehav. R. 19, 19–38 (1995).

    CAS  Article  Google Scholar 

  • 40.

    Pfaus, J. G., Ismail, N. & Coria-Avila, G. A. Sexual motivation. In Encyclopedia of Behavioral Neuroscience (eds. Koob, G. F., Le Moal, M. & Thompson, R. F.) 201–-209 (Oxford, Oxford Academic Press, 2010).

  • 41.

    Bardo, M. T., Donohew, R. L. & Harrington, N. G. Psychobiology of novelty seeking and drug seeking behavior. Behav. Brain Res. 77, 23–43 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Mällo, T. et al. Rats with persistently low or high exploratory activity: behaviour in tests of anxiety and depression and extracellular levels of dopamine. Behav. Brain Res. 177, 269–281 (2006).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 43.

    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: a meta-analysis. Behav. Ecol. 19, 448–455 (2007).

    Article  Google Scholar 

  • 44.

    Csoka, A. B. & Szyf, M. Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med. Hypotheses 73, 770–780 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Kuczenski, R. & Segal, D. S. Effects of methylphenidate on extracellular dopamine serotonin, and norepinephrine: comparison with amphetamine. J. Neurochem. 68, 2032–2037 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Gamo, N. J., Wang, M. & Arnsten, A. F. T. Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors. J. Am. Acad. Child Adolesc. Psychiatry 49, 1011–1023 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Greenhill, L. L. et al. Guidelines and algorithms for the use of methylphenidate in children with attention-deficit/hyperactivity disorder. J. Atten. Disord. 6, S89–S100 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Kessler, R. C. et al. The prevalence and correlates of adult ADHD in the United States: results from the national comorbidity survey replication. Am. J. Psychiatry 163, 716–723 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Visser, S. N. et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003–2011. J. Am. Acad. Child. Psychiatry 53, 34–46 (2014).

    Article  Google Scholar 

  • 50.

    Karlstad, Ø. et al. Use of drugs for ADHD among adults—a multinational study among 15.8 million adults in the Nordic countries. Eur. J. Clin. Pharmacol. 72, 1507–1514 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Biederman, J. Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry 57, 1215–1220 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    McFadyen-Leussis, M. P., Lewis, S. P., Bond, T. L. Y., Carrey, N. & Brown, R. E. Prenatal exposure to methylphenidate hydrochloride decreases anxiety and increases exploration in mice. Pharmacol. Biochem. Behav. 77, 491–500 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Levin, E. D. et al. 2011. Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicol. Teratol. 33, 668–673 (2011).

  • 54.

    Lloyd, S. A. et al. Prenatal exposure to psychostimulants increases impulsivity, compulsivity, and motivation for rewards in adult mice. Physiol. Behav. 119, 43–51 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Lepelletier, F. X. et al. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int. J. Neuropsychoph. https://doi.org/10.1093/ijnp/pyu044 (2015).

    Article  Google Scholar 

  • 56.

    Montagnini, B. G. et al. Effects of repeated administration of methylphenidate on reproductive parameters in male rats. Physiol. Behav. 133, 122–129 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    He, F., Lidow, I. A. & Lidow, M. S. Consequences of paternal cocaine exposure in mice. Neurotoxicol. Teratol. 28, 198–209 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Killinger, C. E., Robinson, S. & Stanwood, G. D. Subtle biobehavioral effects produced by paternal cocaine exposure. Synapse 66, 902–908 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G. & Pierce, R. C. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16, 42–67 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Fischer, D. K., Rice, R. C., Rivera, A. M., Donohoe, M. & Rajadhyaksha, A. M. Altered reward sensitivity in female offspring of cocaine-exposed fathers. Behav. Brain Res. 332, 23–31 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Wimmer, M. E. et al. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol. Psychiatry 22, 1641–1650 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Yano, M. & Steiner, H. Methylphenidate and cocaine: the same effects on gene regulation?. Trends Pharmacol. Sci. 28, 588–596 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Hall, Z. J., De Serrano, A. R., Rodd, F. H. & Tropepe, V. Casting a wider fish net on animal models in neuropsychiatric research. Prog. Neuropsychopharmacol. Biol. Psychiatry 55, 7–15 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Fontana, B. D., Mezzomo, N. J., Kalueff, A. V. & Rosemberg, D. B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp. Neurol. 299, 157–171 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Reznick, D. N. The impact of predation on life history evolution in Trinidadian guppies: genetic basis of observed life history patterns. Evolution 36, 1236–1250 (1982).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    DeMarais, A. & Oldis, D. Matrotrophic transfer of fluorescent microspheres in Poeciliid fishes. Copeia 3, 632–636 (2005).

    Article  Google Scholar 

  • 67.

    Hughes, K. A., Du, L., Rodd, F. H. & Reznick, D. N. Familiarity leads to female mate preference for novel males in the guppy Poecilia reticulata. Anim. Behav. 58(907), 916 (1999).

    Google Scholar 

  • 68.

    Rodd, F. H., Hughes, K. A., Grether, G. F. & Baril, C. T. A possible non-sexual origin of mate preference: are male guppies mimicking fruit?. Proc. R. Soc. B Biol. Sci. 269, 475–481 (2002).

    Article  Google Scholar 

  • 69.

    Valvo, J., Rodd, F. H. & Hughes, K. A. Consistent female preference for rare and unfamiliar male color patterns in wild guppy populations. Behav. Ecol. 30, 1672–1681 (2019).

    Article  Google Scholar 

  • 70.

    Daniel, M. J., Koffinas, L. & Hughes, K. A. Mating preference for novel phenotypes can be explained by general neophilia in female guppies. Am. Nat. 196, 414–428 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Deacon, A. E., Ramnarine, I. W. & Magurran, A. E. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6, e24416. https://doi.org/10.1371/journal.pone.0024416 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    De Serrano, A. R., Fong, C. & Rodd, F. H. Effects of methylphenidate on responses to novelty in a teleost fish (Poecilia reticulata). Behav. Brain Res. 302, 53–59 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 74.

    Schmitz, F. et al. Methylphenidate causes behavioral impairments and neuron and astrocyte loss in the hippocampus of juvenile rats. Mol. Neurobiol. 54, 4201–4216 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 75.

    Bolaños, C. A., Barrot, M., Berton, O., Wallace-Black, D. & Nestler, E. J. Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol. Psychiatry 54, 1317–1329 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 76.

    Bell, A. M. & Hellman, J. K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. S. 50, 97–118 (2019).

    Article  Google Scholar 

  • 77.

    Walsh, R. N. & Cummins, R. A. Open-field test—critical review. Psychol. Bull. 83, 482–504 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Hill, M. O. Correspondence analysis: a neglected multivariate method. J. R. Stat. Soc. C Appl. 23, 340–354 (1974).

    MathSciNet  Google Scholar 

  • 79.

    Godin, J. G. J. Evading predators. In Behavioural Ecology of Teleost Fishes (ed. Godin, J. G. J.) 191–236 (Oxford, Oxford University Press, 1997).

  • 80.

    Sih, A. Foraging strategies and the avoidance of predation by an aquatic insect Notonecta Hoffmanni. Ecology 63(786), 796 (1982).

    Google Scholar 

  • 81.

    McPeek, M. A., Grace, M. & Richardson, J. M. L. Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies. Ecology 82, 1535–1545 (2001).

    Article  Google Scholar 

  • 82.

    Burns, J. G. The validity of three tests of temperament in guppies (Poecilia reticulata). J. Comp. Psychol. 122, 344–356 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Morris, S. M. et al. The genetic toxicity of methylphenidate: a review of the current literature. J. Appl. Toxicol. 32, 756–764 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    SAS Institute. SAS/STAT 9.4 User’s Guide (SAS Institute, Cary, 2013).

  • 85.

    Seghers, B. H. Feeding behavior and terrestrial locomotion in the cyprinodontid fish, Rivulus harti (Boulenger). Verh. Internat. Verein. Limnol. 20, 2055–2059 (1978).

    Google Scholar 

  • 86.

    Mattingly, H. T. & Butler, M. J. Laboratory predation on the Trinidadian guppy: implications for the size-selective predation hypothesis and guppy life history evolution. OIKOS 69, 54–64 (1994).

    Article  Google Scholar 

  • 87.

    Reznick, D. N., Butler, M. J., Rodd, F. H. & Ross, P. N. Life history evolution in guppies (Poecilia reticulata): 6—differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996).

    PubMed  PubMed Central  Google Scholar 

  • 88.

    Bijlsma, L., Emke, E., Hernandez, F. & de Voogt, P. Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high resolution mass spectrometry. Chemosphere 89, 1399–1406 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Racamonde, I., Rodil, R., Quintana, J. B., Villaverde-de-Saa, E. & Cela, R. Determination of benzodiazepines, related pharmaceuticals and metabolites in water by solid-phase extraction and liquid-chromatography-tandem mass spectrometry. J. Chromatogr. A 1352, 69–79 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Laland, K. et al. Does evolutionary theory need a rethink?. Nature 514, 161–164 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 9, 2973. https://doi.org/10.1038/s41467-018-05445-5 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 92.

    Soubry, A., Hoyo, C., Jirtle, R. L. & Murphy, S. K. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays 36, 359–371 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. PNAS 115, 6249–6254 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 94.

    Wang, X. & Bhandari, R. K. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 14, 611–622 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 95.

    Wang, X. & Bhandari, R. K. The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka (Oryzias latipes). Epigenetics 15, 483–498 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Furchtgott, E., Dees, J. W. & Wechkin, S. Open-field exploration as a function of age. J. Comp. Physiol. Psychol. 54, 386–388 (1961).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 97.

    Werboff, J. & Havlena, J. The effects of aging on open-field behavior. Psychol. Rep. 10, 395–398 (1962).

    Article  Google Scholar 

  • 98.

    Valle, F. P. Rats performance on repeated tests in open field as a function of age. Psychon. Sci. 23, 333–335 (1971).

    Article  Google Scholar 

  • 99.

    Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 100.

    McBirney, M. et al. Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS One 12, e0184306. https://doi.org/10.1371/journal.pone.0184306 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 101.

    Becker, J. B. & Chartoff, E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 44, 166–183 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Rubinow, D. R. & Schmidt, P. J. Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 44, 111–128 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 103.

    Eriksson, K., Halkka, O., Lokki, J. & Saura, A. Enzyme polymorphism in feral, outbred and inbred rats (Rattus norvegicus). Heredity 37, 341–349 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 104.

    Connor, J. L. & Belucci, M. J. Natural selection resisting inbreeding depression in captive wild housemice (Mus musculus). Evolution 33, 929–940 (1979).

    PubMed  Article  PubMed Central  Google Scholar 

  • 105.

    Mina, N. S., Sheldon, B. L., Yoo, B. H. & Frankham, R. Heterozygosity at protein loci in inbred and outbred lines of chickens. Poult. Sci. 70, 1864–1872 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Turissini, D. A., Gamez, S. & White, B. J. Genome-wide patterns of polymorphism in an inbred line of the African malaria mosquito Anopheles gambiae. Genome Biol. Evol. 6, 3094–3104 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 107.

    Gray, J. D. et al. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress. J. Neurosci. 27, 7196–7207 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 108.

    Marco, E. M. et al. Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure. Neurosci. Biobehav. Rev. 35, 1722–1739 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 109.

    American Psychiatric Association. Attention-deficit/hyperactivity disorder. In Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Association, Philadelphia, 2014).

  • 110.

    Novartis Pharmaceuticals Canada Inc. Product monograph for Ritalin and Ritalin SR (2017).

  • 111.

    Brenhouse, H. C. & Andersen, S. L. Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci. Biobehav. Rev. 35, 1687–1703 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 112.

    Houde, A. E. Sex, Color, and Mate Choice in Guppies (Princeton, Princeton University Press, 1997).

    Google Scholar 

  • 113.

    Yoshida, M., Nagamine, M. & Uematsu, K. Comparison of behavioral responses to a novel environment between three teleosts, bluegill Lepomis macrochirus, crucian carp Carassius langsdorfii, and goldfish Carassius auratus. Fisheries Sci. 71, 314–319 (2005).

    CAS  Article  Google Scholar 

  • 114.

    Blumstein, D. T., Evans, C. S. & Daniels, J. C. JWatcher (v. 1.0, 2006).

  • 115.

    Ahmad, F. & Richardson, M. K. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity. Behav. Process. 92, 88–98 (2013).

    Article  Google Scholar 

  • 116.

    Burns, J. G., Price, A. C., Thomson, J. D., Hughes, K. A. & Rodd, F. H. Environmental and genetic effects on exploratory behavior of high- and low-predation guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 70, 1187–1196 (2016).

    Article  Google Scholar 

  • 117.

    Marriott, A. S. The effects of amphetamine, caffeine and methylphenidate on the locomotor activity of rats in an unfamiliar environment. Int. J. Neuropharmacol. 7, 487–491 (1968).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 118.

    Dyne, L. J. & Hughes, R. N. Effects of methylphenidate on activity and reactions to novelty in rats. Psychon. Sci. 19, 267–268 (1970).

    Article  Google Scholar 

  • 119.

    R Core Team. R: A Language and Environment for Statistical Computing (Vienna, R Foundation for Statistical Computing, 2018).

  • 120.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, Berlin, 2002).

    Google Scholar 

  • 121.

    Volkow, N. D. et al. Dopamine transporters decrease with age. J. Nucl. Med. 37, 554–559 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 122.

    Andersen, S. L. & Teicher, M. H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 24, 137–141 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 123.

    Arvidsson, E., Viereckel, T., Mikulovic, S. & Wallén-Mackenzie, Å. Age- and sex-dependence of dopamine release and capacity for recovery identified in the dorsal striatum of C57/Bl6J mice. PLoS One 9, e99592. https://doi.org/10.1371/journal.pone.0099592 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 124.

    Faraone, S. V., Biederman, J., Morley, C. P. & Spencer, T. J. Effect of stimulants on height and weight: a review of the literature. J. Am. Acad. Child Adolesc. Psychiatry 47, 994–1009 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 125.

    Tempelman, R. J. & Rosa, G. J. M. Empirical Bayes approaches to mixed model inference in quantitative genetics. In Genetic Analysis of Complex Traits Using SAS (ed. Saxton, A.) (SAS Institute, Cary, 2004).

  • 126.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article  Google Scholar 

  • 127.

    Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D. & Schabenberger, O. SAS for Mixed Models (SAS Institute, Cary, 2006).

    Google Scholar 


  • Source: Ecology - nature.com

    Meet the research scientists behind MITEI’s Electric Power Systems Center

    Lifestyle of sponge symbiont phages by host prediction and correlative microscopy