in

Peat deposits store more carbon than trees in forested peatlands of the boreal biome

  • 1.

    Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 521–610 (2014).

    ADS  Article  Google Scholar 

  • 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. USA 117, 20438–20446 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Payette, S. Les principaux types de tourbières. In Écologie des tourbières du Québec-Labrador (eds Payette, S. & Rochefort, L.) 39–90 (Les Presses de l’Université Laval, Québec, 2001).

    Google Scholar 

  • 5.

    Charman, D. Peatlands and Environmental Change (Wiley, Hoboken, 2002).

    Google Scholar 

  • 6.

    Pakarinen, P. Classification of boreal mires in Finland and Scandinavia: a review. Vegetatio 118, 29–38 (1995).

    Article  Google Scholar 

  • 7.

    Zoltai, S. C. & Martikainen, P. J. Estimated extent of forested peatlands and their role in the global carbon cycle. In Forest Ecosystems, Forest Management and the Global Carbon Cycle (eds Apps, M. J. & Price, D. T.) 47–58 (Springer, Berlin, 1996).

    Google Scholar 

  • 8.

    Lavoie, M., Paré, D. & Bergeron, Y. Impact of global change and forest management on carbon sequestration in northern forested peatlands. Environ. Rev. 13, 199–240 (2005).

    CAS  Article  Google Scholar 

  • 9.

    Thompson, D. K., Simpson, B. N. & Beaudoin, A. Using forest structure to predict the distribution of treed boreal peatlands in Canada. For. Ecol. Manag. 372, 19–27 (2016).

    Article  Google Scholar 

  • 10.

    Webster, K. et al. Spatially-integrated estimates of net ecosystem exchange and methane fuxes from Canadian peatlands. Carbon Balance Manag. 13, 1–21. https://doi.org/10.1186/s13021-018-0105-5 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Minkkinen, K., Byrne, K. A. & Trettin, C. Climate impacts of peatland forestry in Peatlands and Climate Change (ed. Strack, M.) 98–122 (International Peat Society, 2008).

  • 12.

    Laiho, R. & Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. For. Ecol. Manag. 93, 161–169 (1997).

    Article  Google Scholar 

  • 13.

    Minkkinen, K. & Laine, J. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can. J. For. Res. 28, 1267–1275 (1998).

    Article  Google Scholar 

  • 14.

    Lohila, A. et al. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8, 3203–3218 (2011).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Simola, H., Pitkänen, A. & Turunen, J. Carbon loss in drained forestry peatlands in Finland, estimated by re-sampling peatlands surveyed in the 1980s. Eur. J. Soil Sci. 63, 798–807 (2012).

    CAS  Article  Google Scholar 

  • 16.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–21165 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    Yosef, G. et al. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. https://doi.org/10.1038/s41598-018-19265-6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 20.

    IPCC. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (eds. Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M. & Malley, J.), https://www.ipcc.ch/srccl/ (IPCC, 2019).

  • 21.

    Bona, K. A., Fyles, J. W., Shaw, C. & Kurz, W. A. Are mosses required to accurately predict upland black spruce forest soil carbon in national-scale forest C accounting models?. Ecosystems 16, 1071–1086 (2013).

    CAS  Article  Google Scholar 

  • 22.

    Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1–7. https://doi.org/10.1038/s41467-018-03406-6 (2018).

    CAS  Article  Google Scholar 

  • 23.

    Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 1–13 (2020).

    Article  Google Scholar 

  • 24.

    Magnan, G., Garneau, M., Le Stum-Boivin, É., Grondin, P. & Bergeron, Y. Long-term carbon sequestration in boreal forested peatlands in eastern Canada. Ecosystems (2020).

  • 25.

    Laamrani, A., DesRochers, A. & Blackburn, L. Effect of organic layer thickness on black spruce aging mistakes in Canadian boreal forests. Forests https://doi.org/10.3390/f7030069 (2016).

    Article  Google Scholar 

  • 26.

    Beaulne, J., Boucher, É., Garneau, M. & Magnan, G. Paludification reduces black spruce growth rate but does not alter tree water use efficiency in Canadian boreal forested peatlands. For. Ecosyst. https://doi.org/10.21203/rs.3.rs-57461/v2.

  • 27.

    Young, Y. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci Rep https://doi.org/10.1038/s41598-019-53879-8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Jacobs, J., Work, T., Paré, D. & Bergeron, Y. Paludification of boreal soils reduces wood decomposition rates and increases wood-based carbon storage. Ecosphere 6, 1–20 (2015).

    Article  Google Scholar 

  • 29.

    Joosten, H., Sirin, A., Couwenberg, J., Laine, J. & Smith, P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice (eds Bonn, A. et al.) 63–76 (Cambridge University Press, Cambridge, 2016).

    Google Scholar 

  • 30.

    Shetler, G., Turetsky, M. R., Kane, E. & Kasischke, E. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can. J. For. Res. 38, 2328–2336 (2008).

    CAS  Article  Google Scholar 

  • 31.

    Terrier, A., de Groot, W. J., Girardin, M. P. & Bergeron, Y. Dynamics of moisture content in spruce-feather moss and spruce-Sphagnum organic layers during an extreme fire season and implications for future depths of burn in Clay Belt black spruce forests. Int. J. Wildland Fire 23, 490–502 (2014).

    Article  Google Scholar 

  • 32.

    Moore, T., Bubier, J. & Bledzki, L. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10, 949–963 (2007).

    Article  Google Scholar 

  • 33.

    Lang, S. I. et al. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J. Ecol. 97, 886–900 (2009).

    CAS  Article  Google Scholar 

  • 34.

    Manies, K. L., Harden, J. W., Fuller, C. C. & Turetsky, M. R. Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems. Biogeosciences 13, 4315–4327 (2016).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).

    ADS  Article  Google Scholar 

  • 36.

    Garneau, M. et al. Holocene carbon dynamics of boreal and subarctic peatlands from Québec, Canada. Holocene 24, 1043–1053 (2014).

    ADS  Article  Google Scholar 

  • 37.

    Magnan, G. et al. Holocene vegetation dynamics and hydrological variability in forested peatlands of the Clay Belt, eastern Canada, reconstructed using a palaeoecological approach. Boreas 48, 131–146 (2019).

    Article  Google Scholar 

  • 38.

    Turunen, J., Roulet, N. T., Moore, T. R. & Richard, P. J. H. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob. Biogeochem. Cycles 18, GB3002 (2004).

    ADS  Article  CAS  Google Scholar 

  • 39.

    Piilo, S. R. et al. Recent peat and carbon accumulation following the Little Ice Age in northwestern Québec, Canada. Environ. Res. Lett. 14, 075002 (2019).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Heikurainen, L. Improvement of forest growth on poorly drained peat soils. Int. Rev. For. Res. 1, 39–113 (1964).

    Google Scholar 

  • 41.

    Simard, M., Lecomte, N., Bergeron, Y., Bernier, P. Y. & Paré, D. Forest productivity decline caused by successional paludification of boreal soils. Ecol. Appl. 17, 1619–1637 (2007).

    PubMed  Article  Google Scholar 

  • 42.

    Pluchon, N., Hugelius, G., Kuusinen, N. & Kuhry, P. Recent paludification rates and effects on total ecosystem carbon storage in two boreal peatlands of Northeast European Russia. Holocene 24, 1126–1136 (2014).

    ADS  Article  Google Scholar 

  • 43.

    Päivänen, J. The effects of silvicultural treatments on the ground water table in Norway spruce and Scots pine stands on peat in Proceedings of the 6thInternational Peat Congress (ed. International Peat Society) 433–438 (International Peat Society, 1980).

  • 44.

    Lappalainen, E. Peatlands and peat resources in Finland in Peatlands in Finland (ed. Vasander, H.) 36–38 (Finnish Peatland Society, 1996).

  • 45.

    Lavoie, M., Paré, D., Fenton, N., Groot, A. & Taylor, K. Paludification and management of forested peatlands in Canada: a literature review. Environ. Rev. 13, 21–50 (2005).

    Article  Google Scholar 

  • 46.

    Lafleur, B., Paré, D., Fenton, N. J. & Bergeron, Y. Growth of planted black spruce seedlings following mechanical site preparation in boreal forested peatlands with variable organic layer thickness: 5-year results. Ann. For. Sci. 68, 1291–1302 (2011).

    Article  Google Scholar 

  • 47.

    Prévost, M. & Dumais, D. Long-term growth response of black spruce advance regeneration (layers), natural seedlings and planted seedlings to scarification: 25th year update. Scand. J. For. Res. 33, 583–593 (2018).

    Article  Google Scholar 

  • 48.

    Ojanen, P., Minkkinen, K. & Penttilä, T. The current greenhouse gas impact of forestry-drained boreal peatlands. For. Ecol. Manag. 289, 201–208 (2013).

    Article  Google Scholar 

  • 49.

    Kurz, W. A. et al. Carbon in Canada’s boreal forest—A synthesis. Environ. Rev. 21, 260–292 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Lafleur, B. et al. Ecosystem management in paludified boreal forests: enhancing wood production, biodiversity, and carbon sequestration at the landscape level. For. Ecosyst. 5, 1–14. https://doi.org/10.1186/s40663-018-0145-z (2018).

    Article  Google Scholar 

  • 51.

    Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20, 597–608 (2011).

    Article  Google Scholar 

  • 52.

    Lévesque, M., Siegwolf, R., Saurer, M., Eilmann, B. & Rigling, A. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol. 203, 94–109. https://doi.org/10.1111/nph.12772 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2014).

    Article  CAS  Google Scholar 

  • 54.

    Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl. Acad. Sci. USA 116, 2749–2754 (2019).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 55.

    Saucier, J.-P., Robitaille, A. & Grondin, P. Cadre bioclimatique du Québec in Manuel de foresterie, 2nd ed. (eds. Doucet, R. & Côté, M.) 186–205 (Éditions MultiMondes, 2009).

  • 56.

    Vincent, J.-S. & Hardy, L. L’évolution et l’extension des lacs glaciaires Barlow et Ojibway en territoire québécois. Géogr. Phys. Quat. 31, 357–372 (1977).

    Google Scholar 

  • 57.

    Bergeron, Y., Gauthier, S., Flannigan, M. D. & Kafka, V. Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology 85, 1916–1932 (2004).

    Article  Google Scholar 

  • 58.

    McKenney, D. W. et al. Customized spatial climate models for North America. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/2011BAMS3132.1 (2011).

    Article  Google Scholar 

  • 59.

    Bazoge, A., Lachance, D. & Villeneuve, C. Identification et délimitation des milieux humides du Québec méridional, Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Direction de l’écologie et de la conservation et Direction des politiques de l’eau (Gouvernement du Québec, 2014).

  • 60.

    Le Stum-Boivin, É. et al. Spatiotemporal evolution of paludification associated with autogenic and allogenic factors in the black spruce–moss boreal forest of Québec, Canada. Quat. Res. 91, 650–664 (2019).

    Article  CAS  Google Scholar 

  • 61.

    MFFP (Ministère des Forêts, de la Faune et des Parcs). Ecoforestry maps, ftp://transfert.mffp.gouv.qc.ca/Public/Diffusion/DonneeGratuite/Foret/DONNEES_FOR_ECO_SUD/Resultats_inventaire_et_carte_ecofor (2019).

  • 62.

    Jeglum, J. K., Rothwell, R. L., Berry, G. J. & Smith, G. K. M. A Peat Sampler for Rapid Survey. Frontline, Technical Note 13, 921–932 (Canadian Forestry Service, 1992).

  • 63.

    Reimer, P. J. et al. IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years calBP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Article  Google Scholar 

  • 64.

    Appleby, P. G. & Oldfield, F. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5, 1–8 (1978).

    CAS  Article  Google Scholar 

  • 65.

    Ali, A. A., Ghaleb, B., Garneau, M., Asnong, H. & Loisel, J. Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques. Appl. Radiat. Isot. 66, 1350–1358 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Blaauw, M. & Christen, J. A. rbacon: Age-Depth Modelling using Bayesian Statistics. R package version 2.3.9.1, https://CRAN.R-project.org/package=rbacon (2019).

  • 67.

    Magnan, G., Lavoie, M. & Payette, S. Impact of fire on long-term vegetation dynamics of ombrotrophic peatlands in northwestern Québec, Canada. Quat. Res. 77, 110–121 (2012).

    Article  Google Scholar 

  • 68.

    Larson, L.-A. CooRecorder: image co-ordinate recording, version 8.1.1, http://www.cybis.se (Cybis, 2016).

  • 69.

    Knibbe, B. PAST5: Personal Analysis System for Treering Research, version 5.0.610, http://www.sciem.com/products/past/ (SCIEM, 2019).

  • 70.

    Bunn, A. et al. dplR: Dendrochronology Program Library in R. R package version 1.6.9, https://CRAN.R-project.org/package=dplR (2018).

  • 71.

    Dean, E. W. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Petrol. 44, 242–248 (1974).

    CAS  Google Scholar 

  • 72.

    Chambers, F. M., Beilman, D. W. & Yu, Z. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 7, 1–10 (2011).

    Google Scholar 

  • 73.

    Ung, C. H., Bernier, P. & Guo, X. J. Canadian national biomass equations: new parameter estimates that include British Columbia data. Can. J. For. Res. 38, 1123–1132 (2008).

    Article  Google Scholar 

  • 74.

    Kurz, W. A., Beukema, S. J. & Apps, M. J. Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Can. J. For. Res. 26, 1973–1979 (1996).

    Article  Google Scholar 

  • 75.

    Ouimet, R., Camiré, C., Brazeau, M. & Moore, J.-D. Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Can. J. For. Res. 38, 92–100 (2008).

    Article  Google Scholar 

  • 76.

    Brassard, B. W., Chen, H. Y. H., Bergeron, Y. & Paré, D. Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada. Biomass Bioenergy 35, 4189–4196 (2011).

    Article  Google Scholar 

  • 77.

    Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: a synthesis. Forests 3, 332–352. https://doi.org/10.3390/f3020332 (2012).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT convenes influential industry leaders in the fight against climate change

    How will Covid-19 ultimately impact climate change?