in

Phytoplankton taxonomic and functional diversity patterns across a coastal tidal front

  • 1.

    Falkowski, M. et al. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–207 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Worden, A. Z. et al. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science (80–) 347, 1257594 (2015).

    Article  CAS  Google Scholar 

  • 3.

    Legendre, L. The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. J. Plankton Res. 12, 681–699 (1990).

    CAS  Article  Google Scholar 

  • 4.

    Brander, K. M. Global fish production and climate change. Proc. Natl. Acad. Sci. USA 104, 19709–19714 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Cardinale, B. J. Biodiversity improves water quality through niche partitioning. Nature 472, 86–89 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Striebel, M., Singer, G., Stibor, H. & Andersen, T. ‘Trophic overyielding’: Phytoplankton diversity promotes zooplankton productivity. Ecology 93, 2719–2727 (2012).

    PubMed  Article  Google Scholar 

  • 7.

    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Chust, G., Irigoien, X., Chave, J. & Harris, R. P. Latitudinal phytoplankton distribution and the neutral theory of biodiversity. Glob. Ecol. Biogeogr. 22, 531–543 (2013).

    Article  Google Scholar 

  • 9.

    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Della Penna, A. & Gaube, P. Overview of (sub)mesoscale ocean dynamics for the NAAMES field program. Front. Mar. Sci. 6, 1–7 (2019).

    Article  Google Scholar 

  • 11.

    d’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. & Levy, M. Fluid dynamical niches of phytoplankton types. Proc. Natl. Acad. Sci. 107, 18366–18370 (2010).

    ADS  PubMed  Article  Google Scholar 

  • 12.

    Villar, E. et al. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science (80–) 348, 1261447–1261447 (2015).

    Article  CAS  Google Scholar 

  • 13.

    Mousing, E. A., Richardson, K., Bendtsen, J., Cetinić, I. & Perry, M. J. Evidence of small-scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean. J. Ecol. 104, 1682–1695 (2016).

    Article  Google Scholar 

  • 14.

    Lévy, M., Franks, P. J. S. & Smith, K. S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9, 4758 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Perruche, C., Rivière, P., Lapeyre, G., Carton, X. & Pondaven, P. Effects of surface quasi-geostrophic turbulence on phytoplankton competition and coexistence. J. Mar. Res. 69, 105–135 (2011).

    Article  Google Scholar 

  • 16.

    Prairie, J. C., Sutherland, K. R., Nickols, K. J. & Kaltenberg, A. M. Biophysical interactions in the plankton: A cross-scale review. Limnol. Oceanogr. Fluids Environ. 2, 121–145 (2012).

    Article  Google Scholar 

  • 17.

    Adjou, M., Bendtsen, J. & Richardson, K. Modeling the influence from ocean transport, mixing and grazing on phytoplankton diversity. Ecol. Modell. 225, 19–27 (2012).

    CAS  Article  Google Scholar 

  • 18.

    Clayton, S., Dutkiewicz, S., Jahn, O. & Follows, M. J. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol. Oceanogr. Fluids Environ. 3, 182–197 (2013).

    Article  Google Scholar 

  • 19.

    Lévy, M., Jahn, O., Dutkiewicz, S., Follows, M. J. & d’Ovidio, F. The dynamical landscape of marine phytoplankton diversity. J. R. Soc. Interface 12, 20150481 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Cadier, M., Sourisseau, M., Gorgues, T., Edwards, C. A. & Memery, L. Assessing spatial and temporal variability of phytoplankton communities’ composition in the Iroise Sea ecosystem (Brittany, France): A 3D modeling approach: Part 2: Linking summer mesoscale distribution of phenotypic diversity to hydrodynamism. J. Mar. Syst. 169, 111–126 (2017).

    Article  Google Scholar 

  • 21.

    Clayton, S., Lin, Y. C., Follows, M. J. & Worden, A. Z. Co-existence of distinct Ostreococcus ecotypes at an oceanic front. Limnol. Oceanogr. 62, 75–88 (2017).

    ADS  Article  Google Scholar 

  • 22.

    Hill, A. E. et al. Thermohaline circulation of shallow tidal seas. Geophys. Res. Lett. 35, 5–9 (2008).

    Google Scholar 

  • 23.

    Sharples, J. et al. Internal tidal mixing as a control on continental margin ecosystems. Geophys. Res. Lett. 36, 1–5 (2009).

    Article  Google Scholar 

  • 24.

    Franks, P. J. S. Phytoplankton blooms at fronts: Patterns, scales, and physical forcing mechanisms. Rev. Aquat. Sci. 6, 121–137 (1992).

    Google Scholar 

  • 25.

    Simpson, J. H. The shelf-sea fronts: Implications of their existence and behaviour. Philos. Trans. R. Soc. A 302, 531–546 (1981).

    ADS  Google Scholar 

  • 26.

    Le Fèvre, J., Viollier, M., Le Corre, P., Dupouy, C. & Grall, J. R. Remote sensing observations of biological material by LANDSAT along a tidal thermal front and their relevancy to the available field data. Estuar. Coast. Shelf Sci. 16, 37–50 (1983).

    ADS  Article  Google Scholar 

  • 27.

    Sverdrup, H. U. On conditions for the vernal bloom of phytoplankton. J. Cons. Perm. Int. Explor. Mer 18, 287–295 (1953).

    Article  Google Scholar 

  • 28.

    Morin, P., Le Corre, P. & Le Févre, J. Assimilation and regeneration of nutrients off the west coast of brittany. J. Mar. Biol. Assoc. United Kingdom 65, 677–695 (1985).

    Article  Google Scholar 

  • 29.

    Cloern, J. E. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California. Rev. Geophys. 34, 127 (1996).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Simpson, J. H. & Hunter, J. R. Fronts in the Irish Sea. Nature 250, 404–406 (1974).

    ADS  Article  Google Scholar 

  • 31.

    Mariette, V. & Le Cann, B. Simulation of the formation of Ushant thermal front. Cont. Shelf Res. 4, 20 (1985).

    Article  Google Scholar 

  • 32.

    Sharples, J. et al. Spring-neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnol. Oceanogr. 52, 1735–1747 (2007).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Le Fèvre, J. Aspects of the biology of frontal systems. Adv. Mar. Biol. 23, 163–299 (1986).

    Article  Google Scholar 

  • 34.

    Maguer, J. F., L’Helguen, S. & Waeles, M. Effects of mixing-induced irradiance fluctuations on nitrogen uptake in size-fractionated coastal phytoplankton communities. Estuar. Coast. Shelf Sci. 154, 1–11 (2015).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Cadier, M., Gorgues, T., LHelguen, S., Sourisseau, M. & Memery, L. Tidal cycle control of biogeochemical and ecological properties of a macrotidal ecosystem. Geophys. Res. Lett. 44, 8453–8462 (2017).

    ADS  Article  Google Scholar 

  • 36.

    Sharples, J. Potential impacts of the spring-neap tidal cycle on shelf sea primary production. J. Plankton Res. 30, 183–197 (2008).

    CAS  Article  Google Scholar 

  • 37.

    Zhou, J. & Ning, D. Stochastic community assembly: Does it matter in microbial ecology?. Microbiol. Mol. Biol. Rev. 81, 1–32 (2017).

    Article  Google Scholar 

  • 38.

    Hardin, G. The exclusion competitive principle. Am. Assoc. Adv. Sci. 131, 1292–1297 (1960).

    CAS  Google Scholar 

  • 39.

    Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of Diversity in Marine Phytoplankton. Science (80–) 327, 1509–1512 (2010).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Charria, G. et al. Surface layer circulation derived from Lagrangian drifters in the Bay of Biscay. J. Mar. Syst. 109–110, S60–S76 (2013).

    Article  Google Scholar 

  • 41.

    Ménesguen, A. et al. How to avoid eutrophication in coastal seas? A new approach to derive river-specific combined nitrate and phosphate maximum concentrations. Sci. Total Environ. 628–629, 400–414 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 42.

    Litchman, E. & Klausmeier, C. A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639 (2008).

    Article  Google Scholar 

  • 43.

    Ramond, P. et al. Coupling between taxonomic and functional diversity in protistan coastal communities. Environ. Microbiol. 21, 730–749 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Aminot, A. & Kérouel, R. Dosage Automatique des Nutriments Dans les Eaux Marines: Méthodes en Flux Continu. (2007).

  • 45.

    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science (80–) 348, 1261605 (2015).

    Article  CAS  Google Scholar 

  • 48.

    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, 597–604 (2013).

    Article  CAS  Google Scholar 

  • 49.

    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: Highly-scalable and high-resolution amplicon clustering. PeerJ 1420, 1–20 (2015).

    Google Scholar 

  • 50.

    R Core Team. R: A Language and Environment for Statistical Computing. (2018). R version 3.5.0 (2018-04-23)—“Joy in Playing”. www.r-project.org.

  • 51.

    Mitra, A. The perfect beast. Sci. Am. 318, 26–33 (2018).

    PubMed  Article  Google Scholar 

  • 52.

    Oksanen, J. et al. vegan: Community Ecology Package. (2018).

  • 53.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for interpolation and extrapolation in measuring species diversity. 1–18 (2014). https://doi.org/10.1111/2041-210X.12613.

  • 54.

    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. J. Comput. Appl. https://doi.org/10.3724/SP.J.1087.2009.02191 (2014).

    Article  Google Scholar 

  • 55.

    Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Bruggeman, J. A phylogenetic approach to the estimation of phytoplankton traits. J. Phycol. 65, 52–65 (2011).

    Article  Google Scholar 

  • 57.

    Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses [version 1; referees: 3 approved]. F1000Research 5, 1–49 (2016).

    Article  Google Scholar 

  • 58.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, 20 (2011).

    Article  Google Scholar 

  • 60.

    Stegen, J. C., Lin, X., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6, 1–15 (2015).

    Article  Google Scholar 

  • 61.

    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).

    Article  Google Scholar 

  • 62.

    Legendre, P. & Legendre, L. Numerical Ecology. Third English. (Elsevier, Oxford, 2012).

    Google Scholar 

  • 63.

    Massana, R. Eukaryotic picoplankton in surface oceans. Annu. Rev. Microbiol. 65, 91–110 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Litchman, E., Klausmeier, C. A., Schofield, O. M. & Falkowski, P. G. The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170–1181 (2007).

    PubMed  Article  Google Scholar 

  • 65.

    Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologia 1, 493–509 (1978).

    Google Scholar 

  • 66.

    Thingstad, T. F., Øvreas, L., Egge, J. K., Løvdal, T. & Heldal, M. Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs?. Ecol. Lett. 8, 675–682 (2005).

    Article  Google Scholar 

  • 67.

    Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).

    PubMed  Article  Google Scholar 

  • 68.

    Raven, J. A. Small is beautiful: The picophytoplankton. Funct. Ecol. 12, 503–513 (1998).

    Article  Google Scholar 

  • 69.

    Castaing, P. et al. Relationship between hydrology and seasonal distribution of suspended sediments on the continental shelf of the Bay of Biscay. Deep. Res. Part II Top. Stud. Oceanogr. 46, 1979–2001 (1999).

    ADS  Article  Google Scholar 

  • 70.

    Schultes, S., Sourisseau, M., Le, E., Lunven, M. & Marié, L. Influence of physical forcing on mesozooplankton communities at the Ushant tidal front. J. Mar. Syst. 109–110, S191–S202 (2013).

    Article  Google Scholar 

  • 71.

    Cabello, A. M., Latasa, M., Forn, I., Morán, X. A. G. & Massana, R. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters. Environ. Microbiol. 18, 1578–1590 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Simo-Matchim, A.-G., Gosselin, M., Poulin, M., Ardyna, M. & Lessard, S. Summer and fall distribution of phytoplankton in relation to environmental variables in Labrador fjords, with special emphasis on Phaeocystis pouchetii. Mar. Ecol. Prog. Ser. 572, 19–42 (2017).

    ADS  CAS  Article  Google Scholar 

  • 73.

    Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5, 4299 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Connell, J. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    ADS  CAS  Article  Google Scholar 

  • 75.

    Reynolds, C. S., Padisak, J. & Sommer, U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity : A synthesis. Hydrobiologia 249, 183–188 (1993).

    Article  Google Scholar 

  • 76.

    Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92 (2013).

    PubMed  Article  Google Scholar 

  • 77.

    Chevallier, C. et al. Observations of the Ushant front displacements with MSG/SEVIRI derived sea surface temperature data. Remote Sens. Environ. 146, 3–10 (2014).

    ADS  Article  Google Scholar 

  • 78.

    Raes, E. J. et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1719335115 (2018).

    Article  PubMed  Google Scholar 

  • 79.

    Ribalet, F. et al. Unveiling a phytoplankton hotspot at a narrow boundary between coastal and offshore waters. Proc. Natl. Acad. Sci. 107, 16571–16576 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 80.

    Villa Martín, P., Buček, A., Bourguignon, T. & Pigolotti, S. Ocean currents promote rare species diversity in protists. Sci. Adv. 6, eaaz9037 (2020).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Reynolds, C. S. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249, 157–171 (1993).

    Article  Google Scholar 

  • 82.

    Marañon, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).

    PubMed  Article  Google Scholar 

  • 83.

    Mouillot, D., Gaham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).

    PubMed  Article  Google Scholar 

  • 84.

    Kruk, C. et al. Functional redundancy increases towards the tropics in lake phytoplankton. J. Plankton Res. 39, 518–530 (2017).

    Google Scholar 

  • 85.

    Leruste, A., Villéger, S., Malet, N., De Wit, R. & Bec, B. Complementarity of the multidimensional functional and the taxonomic approaches to study phytoplankton communities in three Mediterranean coastal lagoons of different trophic status. Hydrobiologia https://doi.org/10.1007/s10750-018-3565-4 (2018).

    Article  Google Scholar 

  • 86.

    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    ADS  CAS  Article  Google Scholar 

  • 87.

    Ayata, S. D., Stolba, R., Comtet, T. & Thiébaut, E. Meroplankton distribution and its relationship to coastal mesoscale hydrological structure in the northern Bay of Biscay (NE Atlantic). J. Plankton Res. 33, 1193–1211 (2011).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT convenes influential industry leaders in the fight against climate change

    How will Covid-19 ultimately impact climate change?