Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461. https://doi.org/10.1126/science.aba9475 (2020).
Google Scholar
Senko, J. F. et al. Understanding individual and population-level effects of plastic pollution on marine megafauna. Endanger. Species Res. 43, 234–252 https://doi.org/10.3354/esr01064 (2020).
Google Scholar
Kühn, S. & van Franecker, J. A. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 151, 110858. https://doi.org/10.1016/j.marpolbul.2019.110858 (2020).
Google Scholar
Fred-Ahmadu, O. H. et al. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total Environ. 706, 135978. https://doi.org/10.1016/j.scitotenv.2019.135978 (2020).
Google Scholar
Nelms, S. E. et al. Plastic and marine turtles: A review and call for research. ICES J. Mar. Sci. 73, 165–181. https://doi.org/10.1093/icesjms/fsv165 (2016).
Google Scholar
Li, C., Busquets, R. & Campos, L. C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 707, 135578. https://doi.org/10.1016/j.scitotenv.2019.135578 (2020).
Google Scholar
Collard, F., Gasperi, J., Gabrielsen, G. W. & Tassin, B. Plastic particle ingestion by wild freshwater fish: A critical review. Environ. Sci. Technol. 53, 12974–12988. https://doi.org/10.1021/acs.est.9b03083 (2019).
Google Scholar
Wagner, M. et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 26, 1–9 https://doi.org/10.1186/s12302-014-0012-7 (2014).
Google Scholar
D’Souza, J. M., Windsor, F. M., Santillo, D. & Ormerod, S. J. Food web transfer of plastics to an apex riverine predator. Glob. Change Biol. 26, 3846–3857. https://doi.org/10.1111/gcb.15139 (2020).
Google Scholar
Craig, L. S. et al. Meeting the challenge of interacting threats in freshwater ecosystems: A call to scientists and managers. Elementa Sci. Anthropocene 5, 72. https://doi.org/10.1525/elementa.256 (2017).
Google Scholar
Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).
Google Scholar
Gatti, R. C. Freshwater biodiversity: A review of local and global threats. Int. J. Environ. Stud. 73, 887–904. https://doi.org/10.1080/00207233.2016.1204133 (2016).
Google Scholar
He, F. et al. The global decline of freshwater megafauna. Glob. Change Biol. 25, 3883–3892 https://doi.org/10.1111/gcb.14753 (2019).
Google Scholar
Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).
Google Scholar
Richman, N. I. et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos. Trans. R. Soc. B 370, 20140060. https://doi.org/10.1098/rstb.2014.0060 (2015).
Google Scholar
Rhodin, A. G. J. et al. Global conservation status of turtles and tortoises (order Testudines). Chel. Conserv. Biol. 17, 135–161. https://doi.org/10.2744/CCB-1348.1 (2018).
Google Scholar
Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, R721-735. https://doi.org/10.1016/j.cub.2020.04.088 (2020).
Google Scholar
Schuyler, Q., Hardesty, B. D., Wilcox, C. & Townsend, K. Global analysis of anthropogenic debris ingestion by sea turtles. Conserv. Biol. 28, 129–139 https://doi.org/10.1111/cobi.12126 (2013).
Google Scholar
Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Change Biol. 25, 744–752. https://doi.org/10.1111/gcb.14519 (2018).
Google Scholar
Lynch, J. M. Quantities of marine debris ingested by sea turtles: Global meta-analysis highlights need for standardized data reporting methods and reveals relative risk. Environ. Sci. Technol. 52, 12026–12038. https://doi.org/10.1021/acs.est.8b02848 (2018).
Google Scholar
Turtle Taxonomy Working Group et al. in Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 7:1–292 (eds Anders G. J. Rhodin et al.) (2017).
Dietz, R. & Ferri, D. Chelydra serpentina (Common Snapping Turtle). Deformity. Herpetol. Rev. 34, 56 (2003).
Silveira, E. C., Mascarenhas, C. S., Corrêa, F. & Müller, G. Diet of Trachemys dorbigni (Duméril & Bibron, 1835) (Testudines: Emydidae) in anthropic environments from southern Brazil. Pan-Am. J. Aquat. Sci. 14, 42–50 (2019).
Casale, P., Freggi, D., Paduano, V. & Oliverio, M. Biases and best approaches for assessing debris ingestion in sea turtles, with a case study in the Mediterranean. Mar. Pollut. Bull. 10, 238–249. https://doi.org/10.1016/j.marpolbul.2016.06.057 (2016).
Google Scholar
United States Fish & Wildlife Service. Endangered and threatened wildlife and plants; 90-day findings on 10 petitions. Fed. Reg. 80, 19259–19263 (2015).
López-Luna, M. A. et al. A distinctive new species of mud turtle from western México. Chel. Conserv. Biol. 17, 2–13. https://doi.org/10.2744/CCB-1292.1 (2018).
Google Scholar
Vargas-Ramírez, M. et al. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 148, 106823. https://doi.org/10.1016/j.ympev.2020.106823 (2020).
Google Scholar
Loc-Barragán, J. A. et al. A new species of mud turtle of genus Kinosternon (Testudines: Kinosternidae) from the Pacific Coastal Plain of northwestern Mexico. Zootaxa 4885, 509–529. https://doi.org/10.11646/zootaxa.4885.4.3 (2020).
Google Scholar
Kraus, F. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis. Invading Nature – Springer Series in Invasion Ecology, Volume 4 (Springer, 2009).
Spinks, P. Q., Pauly, G. B., Crayon, J. J. & Shaffer, H. B. Survival of the Western Pond Turtle (Emys marmorata) in an urban California environment. Biol. Conserv. 113, 257–267. https://doi.org/10.1016/s0006-3207(02)00392-0 (2003).
Google Scholar
Lambert, M. R., Nielsen, S. N., Wright, A. N., Thomson, R. C. & Shaffer, H. B. Habitat features determine the basking distribution of introduced Red-eared Sliders and native Western Pond Turtles. Chel. Conserv. Biol. 12, 192–199 https://doi.org/10.2744/CCB-1010.1 (2013).
Google Scholar
Lambert, M. R. et al. Experimental removal of introduced slider turtles offers new insight into competition with a native, threatened turtle. PeerJ 7, e7444. https://doi.org/10.7717/peerj.7444 (2019).
Google Scholar
Costa, Z. J. Responses to predators differ between native and invasive freshwater turtles: Environmental context and its implications for competition. Ethology 120, 1–8 https://doi.org/10.1111/eth.12235 (2014).
Google Scholar
Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 (2011).
Google Scholar
Macali, A. et al. Episodic records of jellyfish ingestion of plastic items reveal a novel pathway for trophic transference of marine litter. Sci. Rep. 8, 1–5. https://doi.org/10.1038/s41598-018-24427-7 (2018).
Google Scholar
Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843. https://doi.org/10.1038/s41598-019-44117-2 (2019).
Google Scholar
Munno, K., De Frond, H., O’Donnell, B. & Rochman, C. M. Increasing the accessibility for characterizing microplastics: Introducing new application-based and spectral libraries of plastic particles (SLoPP and SLoPP-E). Anal. Chem. 92, 2443–2451 https://doi.org/10.1021/acs.analchem.9b03626 (2020).
Google Scholar
Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds T. Armbruster & R. M. Danisi) 1–30 (W. De Gruyter, 2015).
Kuchling, G. & Lwin, U. T. Das Arterhaltungsprojekt für die Dreistreifen-Dachschildkröte (Kachuga trivittata) im Zoo von Mandalay. Marginata 3, 44–50 (2004).
Selman, W. & Lindeman, P. V. Spatial, seasonal, and sexual variation in the diet of Graptemys flavimaculata, a threatened turtle of the Pascagoula River system, Mississippi, USA. Copeia 106, 247–254. https://doi.org/10.1643/CH-17-644 (2018).
Google Scholar
Padgett, D. J., Carboni, J. J. & Schepis, D. J. The dietary composition of Chrysemys picta picta (Eastern Painted Turtles) with special reference to the seeds of aquatic macrophytes. Northeast. Nat. 17, 305–312. https://doi.org/10.1656/045.017.0212 (2010).
Google Scholar
Wang, J., Shi, H., Hu, S., Ma, K. & Li, C. Interspecific differences in diet between introduced Red-eared Sliders and native turtles in China. Asian Herpetol. Res. 4, 190–196. https://doi.org/10.3724/SP.J.1245.2013.00190 (2013).
Google Scholar
Prévot-Julliard, A.-C., Gousset, E., Archinard, C., Cadi, A. & Girondot, M. Pets and invasion risks: Is the slider turtle strictly carnivorous?. Amphibia-Reptilia 28, 139–143 https://doi.org/10.1163/156853807779799036 (2007).
Google Scholar
Bujes, C. S., Ely, I. & Verrastro, L. Trachemys dorbigni (Brazilian Slider). Diet. Herpetol. Rev. 38, 335 (2007).
Letter, A. W., Waldron, K. J., Pollock, D. A. & Mali, I. Dietary habits of Rio Grande Cooters (Pseudemys gorzugi) from two sites within the Black River, Eddy County, New Mexico, USA. J. Herp. 53, 204–208. https://doi.org/10.1670/18-057 (2019).
Google Scholar
Trauth, S. E. & Kelly, J. J. Macrochelys temminckii (Alligator Snapping Turtle) Hook, monofilament line, and sinker. Herpetol. Rev. 48, 836 (2017).
Steen, D. A., Hopkins, B. C., Van Dyke, J. U. & Hopkins, W. A. Prevalence of ingested fish hooks in freshwater turtles from five rivers in the southeastern United States. PLoS ONE 9, e91368. https://doi.org/10.1371/journal.pone.0091368 (2014).
Google Scholar
Steen, D. A. & Robinson, O. J. Jr. Estimating freshwater turtle mortality rates and population declines following hook ingestion. Conserv. Biol. 31, 1333–1339. https://doi.org/10.1111/cobi.12926 (2017).
Google Scholar
Walde, A. D. & Christensen, T. P. Terrapene carolina (Eastern Box Turtle). Threats. Herpetol. Rev. 38, 334–335 (2007).
Walde, A. D., Harless, M. L., Delaney, D. K. & Pater, L. L. Anthropogenic threat to the Desert Tortoise (Gopherus agassizii): Litter in the Mojave Desert. West. N. Am. Nat. 61, 147–149 https://doi.org/10.3398/1527-0904(2007)67[147:ATTTDT]2.0.CO;2 (2007).
Google Scholar
Outerbridge, M. E., O’Riordan, R., Quirke, T. & Davenport, J. Restricted diet in a vulnerable native turtle, Malaclemys terrapin (Schoepff), on the oceanic islands of Bermuda. Amphib. Rep. Cons. 11, 25–35 (e134) (2017).
Platt, S. G., Hall, C., Liu, H. & Borg, C. K. Wet-season food habits and intersexual dietary overlap of Florida Box Turtles (Terrapene carolina bauri) on National Key Deer Wildlife Refuge, Florida. Southeast. Nat. 8, 335–346. https://doi.org/10.1656/058.008.0212 (2009).
Google Scholar
Elsey, R. M. Food habits of Macrochelys temminckii (Alligator Snapping Turtle) from Arkansas and Louisiana. Southeast. Nat. 5, 443–452. https://doi.org/10.1656/1528-7092(2006)5[443:FHOMTA]2.0.CO;2 (2006).
Google Scholar
Meathrel, C. E., Suter, P. J. & Reid, S. Habitat and dietary preferences of freshwater turtles in ephemeral billabongs on the Ovens River, north-east Victoria. Victorian Nat. 121, 4–14 (2004).
Sloan, K. N., Buhlmann, K. A. & Lovich, J. E. Stomach contents of commercially harvested adult Alligator Snapping Turtles, Macroclemys temmickii. Chel. Conserv. Biol. 2, 96–99 (1996).
Burge, B. What goes up must come down. Massive balloon releases are a potential threat to tortoises and other wildlife. Tortoise Tracks 10, 4 (1989).
Denton, M. J., Hart, K. M., Oelinik, A., Wood, R. & Baldwin, J. Malaclemys terrapin rhizophorarum (Mangrove Diamond-backed Terrapin). Diet. Herpetol. Rev. 46, 426–427 (2015).
Ernst, C. H. & Lovich, J. E. Turtles of the United States and Canada, 2nd edn. (The John Hopkins University Press, Baltimore, 2009).
Denton, M. J., Hart, K. M., Demopoulos, A. W. J., Oleinik, A. & Baldwin, J. D. Diet of Diamondback Terrapins (Malaclemys terrapin) in subtropical mangrove habitats in South Florida. Chel. Conserv. Biol. 15, 54–61 https://doi.org/10.2744/CCB-1187.1 (2016).
Google Scholar
Chen, T.-H. & Lue, K.-Y. Changes in the population structure and diet of the Chinese Stripe-necked Turtle (Mauremys sinensis) inhabiting a disturbed river in northern Taiwan. Zool. Stud. 48, 95–105 (2009).
Kotenko, T. I. The European Pond Turtle (Emys orbicularis) in the Steppe Zone of the Ukraine. Stapfia 69, 87–106 (2000).
MacDonald, L. A. & Mushinsky, H. R. Foraging ecology of the Gopher Tortoise, Gopherus polyphemus, in a sandhill habitat. Herpetologica 44, 345–353 (1988).
Georges, A., Norris, R. H. & Wensing, L. Diet of the freshwater turtle Chelonida longicollis (Testudines: Chelidae) from the coastal dune lakes of the Jervis Bay Territory. Austral. Wild. Res. 13, 301–308 (1986).
Google Scholar
Georges, A. Diet of the Australian freshwater turtle Emydura krefftii (Chelonia: Chelidae), in an unproductive lentic environment. Copeia 1982, 331–336 (1982).
Google Scholar
Balazs, G. in Proceedings of the workshop on the fate and impact of marine debris. U.S. National Oceanic and Atmospheric Administration (NOAA) Technical memorandum 54. (eds R. S. Shomura & H. O. Yoshido) (National Marine Fisheries Service, Honolulu).
Mrosovsky, N., Ryan, G. D. & James, M. C. Leatherback turtles: The menace of plastic. Mar. Pollut. Bull. 58, 287–289. https://doi.org/10.1016/j.marpolbul.2008.10.018 (2009).
Google Scholar
Stringell, T. B. et al. Taxonomic distinctness in the diet of two sympatric marine turtle species. Mar. Ecol. 37, 1036–1049. https://doi.org/10.1111/maec.12349 (2016).
Google Scholar
Tomás, J., Guitart, R., Mateo, R. & Raga, J. A. Marine debris ingestion in Loggerhead Sea Turtles, Caretta caretta, from the western Mediterranean. Mar. Pollut. Bull. 44, 211–216 https://doi.org/10.1016/s0025-326x(01)00236-3 (2002).
Google Scholar
Hays, D. W., McAllister, K. R., Richardson, S. A. & Stinson, D. W. Washington State Recovery Plan for the Western Pond Turtle, Washington Department of Fish and Wildlife 1–66 (Olympia, 1999).
Rosenberg, D. et al. Conservation Assessment of the Western Pond Turtle in Oregon 1–80 (2009).
Thomson, R. C., Wright, A. N. & Shaffer, H. B. California Amphibian and Reptile Species of Special Concern (University of California Press, California, 2016).
Spinks, P. Q., Thomson, R. C. & Shaffer, H. B. The advantages of going large: Genome-wide SNPs clarify the complex population history and systematics of the threatened Western Pond Turtle. Mol. Ecol. 23, 2228–2241 https://doi.org/10.1111/mec.12736 (2014).
Thomson, R. C., Spinks, P. Q. & Shaffer, H. B. Distribution and abundance of invasive Red-eared Sliders (Trachemys scripta elegans) in California’s Sacramento River Basin and possible impacts on native Western Pond Turtles (Emys marmorata). Chel. Conserv. Biol. 9, 297–302 https://doi.org/10.2744/CCB-0820.1 (2010).
Google Scholar
Silbernagel, C., Clifford, D. L., Bettaso, J., Worth, J. & Foley, J. Prevalence of selected pathogens in Western Pond Turtles and sympatric introduced Red-eared Sliders in California, USA. Dis. Aquat. Org. 107, 37–47. https://doi.org/10.3354/dao02663 (2013).
Google Scholar
Andrade, M. C. et al. First account of plastic pollution impacting freshwater fishes in the Amazon: Ingestion of plastic debris by piranhas and other serrasalmids with diverse feeding habits. Environ. Pollut. 244, 766–773. https://doi.org/10.1016/j.envpol.2018.10.088 (2019).
Google Scholar
Goss, H., Jaskiel, J. & Rotjan, R. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Mar. Pollut. Bull. 135, 1085–1089. https://doi.org/10.1016/j.marpolbul.2018.08.024 (2018).
Google Scholar
Duncan, E. M. et al. Diet-related selectivity of macroplastic ingestion in Green Turtles (Chelonia mydas) in the eastern Mediterranean. Sci. Rep. 9, 1–8. https://doi.org/10.1038/s41598-019-48086-4 (2019).
Google Scholar
Santos, R. G., Andrades, R., Fardim, L. M. & Martins, A. S. Marine debris ingestion and Thayer’s law—The importance of plastic color. Environ. Pollut. 214, 585–588. https://doi.org/10.1016/j.envpol.2016.04.024 (2016).
Google Scholar
García-Díaz, P. et al. Challenges in confirming eradication success of invasive Red-eared Sliders. Biol. Invasions 19, 2739–2750. https://doi.org/10.1007/s10530-017-1480-7 (2017).
Google Scholar
Shultz, A. J. et al. Natural history collections are critical resources for contemporary and future studies of urban evolution. Evol. Appl. 14, 233–247 https://doi.org/10.1111/eva.13045 (2021).
Google Scholar
Source: Ecology - nature.com