in

Plastic ingestion by freshwater turtles: a review and call to action

  • 1.

    Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461. https://doi.org/10.1126/science.aba9475 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Senko, J. F. et al. Understanding individual and population-level effects of plastic pollution on marine megafauna. Endanger. Species Res. 43, 234–252 https://doi.org/10.3354/esr01064 (2020).

    Article 

    Google Scholar 

  • 3.

    Kühn, S. & van Franecker, J. A. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 151, 110858. https://doi.org/10.1016/j.marpolbul.2019.110858 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Fred-Ahmadu, O. H. et al. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total Environ. 706, 135978. https://doi.org/10.1016/j.scitotenv.2019.135978 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Nelms, S. E. et al. Plastic and marine turtles: A review and call for research. ICES J. Mar. Sci. 73, 165–181. https://doi.org/10.1093/icesjms/fsv165 (2016).

    Article 

    Google Scholar 

  • 6.

    Li, C., Busquets, R. & Campos, L. C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 707, 135578. https://doi.org/10.1016/j.scitotenv.2019.135578 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Collard, F., Gasperi, J., Gabrielsen, G. W. & Tassin, B. Plastic particle ingestion by wild freshwater fish: A critical review. Environ. Sci. Technol. 53, 12974–12988. https://doi.org/10.1021/acs.est.9b03083 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Wagner, M. et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 26, 1–9 https://doi.org/10.1186/s12302-014-0012-7 (2014).

    Article 

    Google Scholar 

  • 9.

    D’Souza, J. M., Windsor, F. M., Santillo, D. & Ormerod, S. J. Food web transfer of plastics to an apex riverine predator. Glob. Change Biol. 26, 3846–3857. https://doi.org/10.1111/gcb.15139 (2020).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Craig, L. S. et al. Meeting the challenge of interacting threats in freshwater ecosystems: A call to scientists and managers. Elementa Sci. Anthropocene 5, 72. https://doi.org/10.1525/elementa.256 (2017).

    Article 

    Google Scholar 

  • 11.

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Gatti, R. C. Freshwater biodiversity: A review of local and global threats. Int. J. Environ. Stud. 73, 887–904. https://doi.org/10.1080/00207233.2016.1204133 (2016).

    Article 

    Google Scholar 

  • 13.

    He, F. et al. The global decline of freshwater megafauna. Glob. Change Biol. 25, 3883–3892 https://doi.org/10.1111/gcb.14753 (2019).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).

    Article 

    Google Scholar 

  • 15.

    Richman, N. I. et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos. Trans. R. Soc. B 370, 20140060. https://doi.org/10.1098/rstb.2014.0060 (2015).

    Article 

    Google Scholar 

  • 16.

    Rhodin, A. G. J. et al. Global conservation status of turtles and tortoises (order Testudines). Chel. Conserv. Biol. 17, 135–161. https://doi.org/10.2744/CCB-1348.1 (2018).

    Article 

    Google Scholar 

  • 17.

    Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, R721-735. https://doi.org/10.1016/j.cub.2020.04.088 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Schuyler, Q., Hardesty, B. D., Wilcox, C. & Townsend, K. Global analysis of anthropogenic debris ingestion by sea turtles. Conserv. Biol. 28, 129–139 https://doi.org/10.1111/cobi.12126 (2013).

    Article 

    Google Scholar 

  • 19.

    Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Change Biol. 25, 744–752. https://doi.org/10.1111/gcb.14519 (2018).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Lynch, J. M. Quantities of marine debris ingested by sea turtles: Global meta-analysis highlights need for standardized data reporting methods and reveals relative risk. Environ. Sci. Technol. 52, 12026–12038. https://doi.org/10.1021/acs.est.8b02848 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Turtle Taxonomy Working Group et al. in Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 7:1–292 (eds Anders G. J. Rhodin et al.) (2017).

  • 22.

    Dietz, R. & Ferri, D. Chelydra serpentina (Common Snapping Turtle). Deformity. Herpetol. Rev. 34, 56 (2003).

    Google Scholar 

  • 23.

    Silveira, E. C., Mascarenhas, C. S., Corrêa, F. & Müller, G. Diet of Trachemys dorbigni (Duméril & Bibron, 1835) (Testudines: Emydidae) in anthropic environments from southern Brazil. Pan-Am. J. Aquat. Sci. 14, 42–50 (2019).

    Google Scholar 

  • 24.

    Casale, P., Freggi, D., Paduano, V. & Oliverio, M. Biases and best approaches for assessing debris ingestion in sea turtles, with a case study in the Mediterranean. Mar. Pollut. Bull. 10, 238–249. https://doi.org/10.1016/j.marpolbul.2016.06.057 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    United States Fish & Wildlife Service. Endangered and threatened wildlife and plants; 90-day findings on 10 petitions. Fed. Reg. 80, 19259–19263 (2015).

    Google Scholar 

  • 26.

    López-Luna, M. A. et al. A distinctive new species of mud turtle from western México. Chel. Conserv. Biol. 17, 2–13. https://doi.org/10.2744/CCB-1292.1 (2018).

    Article 

    Google Scholar 

  • 27.

    Vargas-Ramírez, M. et al. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 148, 106823. https://doi.org/10.1016/j.ympev.2020.106823 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Loc-Barragán, J. A. et al. A new species of mud turtle of genus Kinosternon (Testudines: Kinosternidae) from the Pacific Coastal Plain of northwestern Mexico. Zootaxa 4885, 509–529. https://doi.org/10.11646/zootaxa.4885.4.3 (2020).

    Article 

    Google Scholar 

  • 29.

    Kraus, F. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis. Invading Nature – Springer Series in Invasion Ecology, Volume 4 (Springer, 2009).

  • 30.

    Spinks, P. Q., Pauly, G. B., Crayon, J. J. & Shaffer, H. B. Survival of the Western Pond Turtle (Emys marmorata) in an urban California environment. Biol. Conserv. 113, 257–267. https://doi.org/10.1016/s0006-3207(02)00392-0 (2003).

    Article 

    Google Scholar 

  • 31.

    Lambert, M. R., Nielsen, S. N., Wright, A. N., Thomson, R. C. & Shaffer, H. B. Habitat features determine the basking distribution of introduced Red-eared Sliders and native Western Pond Turtles. Chel. Conserv. Biol. 12, 192–199 https://doi.org/10.2744/CCB-1010.1 (2013).

    Article 

    Google Scholar 

  • 32.

    Lambert, M. R. et al. Experimental removal of introduced slider turtles offers new insight into competition with a native, threatened turtle. PeerJ 7, e7444. https://doi.org/10.7717/peerj.7444 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Costa, Z. J. Responses to predators differ between native and invasive freshwater turtles: Environmental context and its implications for competition. Ethology 120, 1–8 https://doi.org/10.1111/eth.12235 (2014).

    Article 

    Google Scholar 

  • 34.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Macali, A. et al. Episodic records of jellyfish ingestion of plastic items reveal a novel pathway for trophic transference of marine litter. Sci. Rep. 8, 1–5. https://doi.org/10.1038/s41598-018-24427-7 (2018).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843. https://doi.org/10.1038/s41598-019-44117-2 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Munno, K., De Frond, H., O’Donnell, B. & Rochman, C. M. Increasing the accessibility for characterizing microplastics: Introducing new application-based and spectral libraries of plastic particles (SLoPP and SLoPP-E). Anal. Chem. 92, 2443–2451 https://doi.org/10.1021/acs.analchem.9b03626 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds T. Armbruster & R. M. Danisi) 1–30 (W. De Gruyter, 2015).

  • 39.

    Kuchling, G. & Lwin, U. T. Das Arterhaltungsprojekt für die Dreistreifen-Dachschildkröte (Kachuga trivittata) im Zoo von Mandalay. Marginata 3, 44–50 (2004).

    Google Scholar 

  • 40.

    Selman, W. & Lindeman, P. V. Spatial, seasonal, and sexual variation in the diet of Graptemys flavimaculata, a threatened turtle of the Pascagoula River system, Mississippi, USA. Copeia 106, 247–254. https://doi.org/10.1643/CH-17-644 (2018).

    Article 

    Google Scholar 

  • 41.

    Padgett, D. J., Carboni, J. J. & Schepis, D. J. The dietary composition of Chrysemys picta picta (Eastern Painted Turtles) with special reference to the seeds of aquatic macrophytes. Northeast. Nat. 17, 305–312. https://doi.org/10.1656/045.017.0212 (2010).

    Article 

    Google Scholar 

  • 42.

    Wang, J., Shi, H., Hu, S., Ma, K. & Li, C. Interspecific differences in diet between introduced Red-eared Sliders and native turtles in China. Asian Herpetol. Res. 4, 190–196. https://doi.org/10.3724/SP.J.1245.2013.00190 (2013).

    Article 

    Google Scholar 

  • 43.

    Prévot-Julliard, A.-C., Gousset, E., Archinard, C., Cadi, A. & Girondot, M. Pets and invasion risks: Is the slider turtle strictly carnivorous?. Amphibia-Reptilia 28, 139–143 https://doi.org/10.1163/156853807779799036 (2007).

    Article 

    Google Scholar 

  • 44.

    Bujes, C. S., Ely, I. & Verrastro, L. Trachemys dorbigni (Brazilian Slider). Diet. Herpetol. Rev. 38, 335 (2007).

    Google Scholar 

  • 45.

    Letter, A. W., Waldron, K. J., Pollock, D. A. & Mali, I. Dietary habits of Rio Grande Cooters (Pseudemys gorzugi) from two sites within the Black River, Eddy County, New Mexico, USA. J. Herp. 53, 204–208. https://doi.org/10.1670/18-057 (2019).

    Article 

    Google Scholar 

  • 46.

    Trauth, S. E. & Kelly, J. J. Macrochelys temminckii (Alligator Snapping Turtle) Hook, monofilament line, and sinker. Herpetol. Rev. 48, 836 (2017).

    Google Scholar 

  • 47.

    Steen, D. A., Hopkins, B. C., Van Dyke, J. U. & Hopkins, W. A. Prevalence of ingested fish hooks in freshwater turtles from five rivers in the southeastern United States. PLoS ONE 9, e91368. https://doi.org/10.1371/journal.pone.0091368 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Steen, D. A. & Robinson, O. J. Jr. Estimating freshwater turtle mortality rates and population declines following hook ingestion. Conserv. Biol. 31, 1333–1339. https://doi.org/10.1111/cobi.12926 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Walde, A. D. & Christensen, T. P. Terrapene carolina (Eastern Box Turtle). Threats. Herpetol. Rev. 38, 334–335 (2007).

    Google Scholar 

  • 50.

    Walde, A. D., Harless, M. L., Delaney, D. K. & Pater, L. L. Anthropogenic threat to the Desert Tortoise (Gopherus agassizii): Litter in the Mojave Desert. West. N. Am. Nat. 61, 147–149  https://doi.org/10.3398/1527-0904(2007)67[147:ATTTDT]2.0.CO;2 (2007).

    Article 

    Google Scholar 

  • 51.

    Outerbridge, M. E., O’Riordan, R., Quirke, T. & Davenport, J. Restricted diet in a vulnerable native turtle, Malaclemys terrapin (Schoepff), on the oceanic islands of Bermuda. Amphib. Rep. Cons. 11, 25–35 (e134) (2017).

  • 52.

    Platt, S. G., Hall, C., Liu, H. & Borg, C. K. Wet-season food habits and intersexual dietary overlap of Florida Box Turtles (Terrapene carolina bauri) on National Key Deer Wildlife Refuge, Florida. Southeast. Nat. 8, 335–346. https://doi.org/10.1656/058.008.0212 (2009).

    Article 

    Google Scholar 

  • 53.

    Elsey, R. M. Food habits of Macrochelys temminckii (Alligator Snapping Turtle) from Arkansas and Louisiana. Southeast. Nat. 5, 443–452. https://doi.org/10.1656/1528-7092(2006)5[443:FHOMTA]2.0.CO;2 (2006).

    Article 

    Google Scholar 

  • 54.

    Meathrel, C. E., Suter, P. J. & Reid, S. Habitat and dietary preferences of freshwater turtles in ephemeral billabongs on the Ovens River, north-east Victoria. Victorian Nat. 121, 4–14 (2004).

    Google Scholar 

  • 55.

    Sloan, K. N., Buhlmann, K. A. & Lovich, J. E. Stomach contents of commercially harvested adult Alligator Snapping Turtles, Macroclemys temmickii. Chel. Conserv. Biol. 2, 96–99 (1996).

    Google Scholar 

  • 56.

    Burge, B. What goes up must come down. Massive balloon releases are a potential threat to tortoises and other wildlife. Tortoise Tracks 10, 4 (1989).

    Google Scholar 

  • 57.

    Denton, M. J., Hart, K. M., Oelinik, A., Wood, R. & Baldwin, J. Malaclemys terrapin rhizophorarum (Mangrove Diamond-backed Terrapin). Diet. Herpetol. Rev. 46, 426–427 (2015).

    Google Scholar 

  • 58.

    Ernst, C. H. & Lovich, J. E. Turtles of the United States and Canada, 2nd edn. (The John Hopkins University Press, Baltimore, 2009).

  • 59.

    Denton, M. J., Hart, K. M., Demopoulos, A. W. J., Oleinik, A. & Baldwin, J. D. Diet of Diamondback Terrapins (Malaclemys terrapin) in subtropical mangrove habitats in South Florida. Chel. Conserv. Biol. 15, 54–61 https://doi.org/10.2744/CCB-1187.1 (2016).

    Article 

    Google Scholar 

  • 60.

    Chen, T.-H. & Lue, K.-Y. Changes in the population structure and diet of the Chinese Stripe-necked Turtle (Mauremys sinensis) inhabiting a disturbed river in northern Taiwan. Zool. Stud. 48, 95–105 (2009).

    Google Scholar 

  • 61.

    Kotenko, T. I. The European Pond Turtle (Emys orbicularis) in the Steppe Zone of the Ukraine. Stapfia 69, 87–106 (2000).

    Google Scholar 

  • 62.

    MacDonald, L. A. & Mushinsky, H. R. Foraging ecology of the Gopher Tortoise, Gopherus polyphemus, in a sandhill habitat. Herpetologica 44, 345–353 (1988).

    Google Scholar 

  • 63.

    Georges, A., Norris, R. H. & Wensing, L. Diet of the freshwater turtle Chelonida longicollis (Testudines: Chelidae) from the coastal dune lakes of the Jervis Bay Territory. Austral. Wild. Res. 13, 301–308 (1986).

    Article 

    Google Scholar 

  • 64.

    Georges, A. Diet of the Australian freshwater turtle Emydura krefftii (Chelonia: Chelidae), in an unproductive lentic environment. Copeia 1982, 331–336 (1982).

    Article 

    Google Scholar 

  • 65.

    Balazs, G. in Proceedings of the workshop on the fate and impact of marine debris. U.S. National Oceanic and Atmospheric Administration (NOAA) Technical memorandum 54. (eds R. S. Shomura & H. O. Yoshido) (National Marine Fisheries Service, Honolulu).

  • 66.

    Mrosovsky, N., Ryan, G. D. & James, M. C. Leatherback turtles: The menace of plastic. Mar. Pollut. Bull. 58, 287–289. https://doi.org/10.1016/j.marpolbul.2008.10.018 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Stringell, T. B. et al. Taxonomic distinctness in the diet of two sympatric marine turtle species. Mar. Ecol. 37, 1036–1049. https://doi.org/10.1111/maec.12349 (2016).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Tomás, J., Guitart, R., Mateo, R. & Raga, J. A. Marine debris ingestion in Loggerhead Sea Turtles, Caretta caretta, from the western Mediterranean. Mar. Pollut. Bull. 44, 211–216 https://doi.org/10.1016/s0025-326x(01)00236-3 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 69.

    Hays, D. W., McAllister, K. R., Richardson, S. A. & Stinson, D. W. Washington State Recovery Plan for the Western Pond Turtle, Washington Department of Fish and Wildlife 1–66 (Olympia, 1999).

    Google Scholar 

  • 70.

    Rosenberg, D. et al. Conservation Assessment of the Western Pond Turtle in Oregon 1–80 (2009).

  • 71.

    Thomson, R. C., Wright, A. N. & Shaffer, H. B. California Amphibian and Reptile Species of Special Concern (University of California Press, California, 2016).

    Google Scholar 

  • 72.

    Spinks, P. Q., Thomson, R. C. & Shaffer, H. B. The advantages of going large: Genome-wide SNPs clarify the complex population history and systematics of the threatened Western Pond Turtle. Mol. Ecol. 23, 2228–2241 https://doi.org/10.1111/mec.12736 (2014).

  • 73.

    Thomson, R. C., Spinks, P. Q. & Shaffer, H. B. Distribution and abundance of invasive Red-eared Sliders (Trachemys scripta elegans) in California’s Sacramento River Basin and possible impacts on native Western Pond Turtles (Emys marmorata). Chel. Conserv. Biol. 9, 297–302 https://doi.org/10.2744/CCB-0820.1 (2010).

    Article 

    Google Scholar 

  • 74.

    Silbernagel, C., Clifford, D. L., Bettaso, J., Worth, J. & Foley, J. Prevalence of selected pathogens in Western Pond Turtles and sympatric introduced Red-eared Sliders in California, USA. Dis. Aquat. Org. 107, 37–47. https://doi.org/10.3354/dao02663 (2013).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Andrade, M. C. et al. First account of plastic pollution impacting freshwater fishes in the Amazon: Ingestion of plastic debris by piranhas and other serrasalmids with diverse feeding habits. Environ. Pollut. 244, 766–773. https://doi.org/10.1016/j.envpol.2018.10.088 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 76.

    Goss, H., Jaskiel, J. & Rotjan, R. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Mar. Pollut. Bull. 135, 1085–1089. https://doi.org/10.1016/j.marpolbul.2018.08.024 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 77.

    Duncan, E. M. et al. Diet-related selectivity of macroplastic ingestion in Green Turtles (Chelonia mydas) in the eastern Mediterranean. Sci. Rep. 9, 1–8. https://doi.org/10.1038/s41598-019-48086-4 (2019).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Santos, R. G., Andrades, R., Fardim, L. M. & Martins, A. S. Marine debris ingestion and Thayer’s law—The importance of plastic color. Environ. Pollut. 214, 585–588. https://doi.org/10.1016/j.envpol.2016.04.024 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 79.

    García-Díaz, P. et al. Challenges in confirming eradication success of invasive Red-eared Sliders. Biol. Invasions 19, 2739–2750. https://doi.org/10.1007/s10530-017-1480-7 (2017).

    Article 

    Google Scholar 

  • 80.

    Shultz, A. J. et al. Natural history collections are critical resources for contemporary and future studies of urban evolution. Evol. Appl. 14, 233–247 https://doi.org/10.1111/eva.13045 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    Study reveals plunge in lithium-ion battery costs