in

Possible interference of Bacillus thuringiensis in the survival and behavior of Africanized honey bees (Apis mellifera)

  • 1.

    Celli, G. & Maccagnani, B. Honey bees as bioindicators of environmental pollution. Bull. Insectol. 56, 1–3 (2003).

    Google Scholar 

  • 2.

    Quigley, T. P., Amdam, G. V. & Harwood, G. H. Honey bees as bioindicators of changing global agricultural landscapes. Curr. Opin. Insect Sci. 35, 132–137 (2019).

    PubMed  Article  Google Scholar 

  • 3.

    Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 285, 20172140 (2018).

    Article  Google Scholar 

  • 4.

    Giannini, T. C., Cordeiro, G. D., Freitas, B. M., Saraiva, A. M. & Imperatriz-Fonseca, V. L. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108, 849–857 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Miñarro, M., García, D. & Martínez-Sastre, R. Los insectos polinizadores en la agricultura: importancia y gestión de su biodiversidad. Ecosistemas Rev. Científica Ecol. y Medio Ambient. 27, 81–90 (2018).

    Google Scholar 

  • 7.

    Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, 24–28 (2012).

    Article  CAS  Google Scholar 

  • 8.

    Kaplan, J. K. Colony collapse disorder: an incomplete puzzle. Agric. Res. Mag. 60, 2489 (2012).

    Google Scholar 

  • 9.

    VanEngelsdorp, D. et al. Colony collapse disorder: a descriptive study. PLoS ONE 4, 1–17 (2009).

    Article  CAS  Google Scholar 

  • 10.

    Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: a risk assessment. PLoS ONE 9, e94482 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Sindiveg, S. N. da I. de P. para D. V. Mapeamento De Abelhas Participativo (MAP). Relatório 3 anos (2014-2017). Colmeia Viva (2017). 61p. https://www.colmeiaviva.com.br/wp-content/uploads/2019/10/RelatorioMAP.pdf

  • 12.

    Wolff, L. F. & Santos, R. S. S. Abelhas melíferas: bioindicadores de qualidade ambiental e de sustentabilidade da agricultura familiar de base ecológica. Embrapa Clima Temperado-Documentos https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/543990/1/documento244.pdf (2008).

  • 13.

    Amaro, P. & Godinho, J. Pesticidas e abelhas. Rev. Ciências Agrárias 35, 53–62 (2012).

    Google Scholar 

  • 14.

    Tosi, S. & Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Sci. Rep. 7, 1–13 (2017).

    Article  CAS  Google Scholar 

  • 15.

    Catae, A. F. et al. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. Pest Manag. Sci. 75, 607–615 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Alves, S. Controle Microbiano de Insetos (FEALQ, Piracicaba, 1998).

    Google Scholar 

  • 17.

    Hajek, A. E. & Eilenberg, J. Natural Enemies: An Introduction to Biological Control (Cambridge University Press, Cambridge, 2018).

    Google Scholar 

  • 18.

    Lacey, L. A. et al. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Melo, A. L. D. A., Soccol, V. T. & Soccol, C. R. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit. Rev. Biotechnol. 36, 317–326 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 20.

    Eski, A., Demir, İ, Sezen, K. & Demirbağ, Z. A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J. Microbiol. Biotechnol. 33, 35 (2017).

    Article  CAS  Google Scholar 

  • 21.

    Göktürk, T. Pyrethrum ve Bacillus thuringiensis biyopestisitlerinin Pristiphora abietina (Christ, 1791) (Hymenoptera: Tenthredinidae) üzerindeki etkisi. Artvin Çoruh Üniversitesi Orman Fakültesi Derg. 18, 83–87 (2017).

    Article  Google Scholar 

  • 22.

    MAPA, M. da A. P. e A. Agrofit. MAPA http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (2019).

  • 23.

    Konecka, E., Kaznowski, A., Stachowiak, M. & Maciąg, M. Activity of spore-crystal mixtures of new Bacillus thuringiensis strains against Dendrolimus pini (Lepidoptera: Lasiocampidae) and Spodoptera exigua (Lepidoptera: Noctuidae). Folia For. Pol. Ser. A 60, 91–98 (2018).

    Google Scholar 

  • 24.

    Gupta, S. & Dikshit, A. K. Biopesticides: an ecofriendly approach for pest control. J. Biopestic. 3, 186–188 (2010).

    Google Scholar 

  • 25.

    Habid, M. E. M. & Andrade, C. F. S. Bactérias entomopatogênicas. in Controle microbiano de insetos (ed Alves, S. B.) 384–446 (FEALQ, Piracicaba, 1998).

  • 26.

    Bravo, A., Gill, S. S. & Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Slessor, K. N., Winston, M. L. & Conte, Y. L. Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31, 2731–2745 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Lugtenberg, B. Principles of Plant-Microbe Interactions (Springer, Berlin, 2015).

    Google Scholar 

  • 29.

    Palma, L. & Berry, C. Understanding the structure and function of Bacillus thuringiensis toxins. Toxicon 109, 1–3 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Malone, L. A. et al. Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie 32, 57–68 (2001).

    CAS  Article  Google Scholar 

  • 31.

    Yi, D., Fang, Z. & Yang, L. Effects of Bt cabbage pollen on the honeybee Apis mellifera L. Sci. Rep. 8, 1–6 (2018).

    Article  CAS  Google Scholar 

  • 32.

    D’Urso, V. et al. Observations on midgut of Apis mellifera workers (Hymenoptera: Apoidea) under controlled acute exposures to a Bacillus thuringiensis-based biopesticide. Apidologie 48, 51–62 (2017).

    Article  CAS  Google Scholar 

  • 33.

    Libardoni, G. et al. Effect of different Bacillus thuringiensis strains on the longevity of Africanized honey bee. Semin. Agrar. 39, 329–338 (2018).

    Article  Google Scholar 

  • 34.

    Zhu, Y. C., Wang, Y., Portilla, M., Parys, K. & Li, W. Risk and toxicity assessment of a potential natural insecticide, methyl benzoate, in honey bees (Apis mellifera L.). Insects 10, 1–17 (2019).

    Google Scholar 

  • 35.

    Hesselbach, H., Seeger, J., Schilcher, F., Ankenbrand, M. & Scheiner, R. Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera. J. Appl. Ecol. 57, 609–618 (2020).

    CAS  Article  Google Scholar 

  • 36.

    Gomes, I. N., Vieira, K. I. C., Gontijo, L. M. & Resende, H. C. Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil. Ecotoxicology 29, 97–107 (2020).

    Article  CAS  Google Scholar 

  • 37.

    Alquisira-Ramírez, E. V., Paredes-Gonzalez, J. R., Hernández-Velázquez, V. M., Ramírez-Trujillo, J. A. & Peña-Chora, G. In vitro susceptibility of Varroa destructor and Apis mellifera to native strains of Bacillus thuringiensis. Apidologie 45, 707–718 (2014).

    Article  CAS  Google Scholar 

  • 38.

    Fagúndez, G. A., Blettler, D. C., Krumrick, C. G., Bertos, M. A. & Trujillo, C. G. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.?. Span. J. Agric. Res. 14, 7 (2016).

    Article  Google Scholar 

  • 39.

    Alquisira-Ramírez, E. V. et al. Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera. Ecotoxicol. Environ. Saf. 142, 69–78 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 40.

    Horta, A. B., Pannuti, L., Baldin, E. L. L. & Furtado, E. L. Toxinas inseticidas de Bacillus thuringiensis. In Biotecnologia Aplicada à Agro&Indústria (ed. Resende, R. R.) 737–773 (Blucher, Erkrath, 2017). https://doi.org/10.5151/9788521211150-21.

    Google Scholar 

  • 41.

    Malone, L. A., Burgess, E. P. J. & Stefanovic, D. Effects of a Bacillus thuringiensis toxin, two Bacillus thuringiensis biopesticide formulations, and a soybean trypsin inhibitor on honey bee (Apis mellifera L.) survival and food consumption. Apidologie 30, 465–473 (1999).

    CAS  Article  Google Scholar 

  • 42.

    Potrich, M. et al. Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Rev. Bras. Entomol. 22, 1–2. https://doi.org/10.1016/j.rbe.2017.12.002 (2018).

    ADS  Article  Google Scholar 

  • 43.

    Wang, Y. Y. et al. Toxicological, biochemical, and histopathological analyses demonstrating that Cry1C and Cry2A are not toxic to larvae of the honeybee Apis mellifera. J. Agric. Food Chem. 63, 6126–6132 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fi pronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 127, 205–213 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Hendriksma, H. P. et al. Effect of stacked insecticidal cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS ONE 8, 1–11 (2013).

    Article  CAS  Google Scholar 

  • 46.

    Jia, H. R. et al. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae). Sci. Rep. 6, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 47.

    Jia, H.-R. et al. No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae). Sci. Rep. 7, 1–10 (2017).

    Article  CAS  Google Scholar 

  • 48.

    Dai, P. et al. The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). Ecotoxicol. Environ. Saf. 181, 381–387 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Baptista, A. P. M., Carvalho, G. A., Carvalho, S. M., Carvalho, C. F. & de Bueno Filho, J. S. S. Toxicidade produtos fitossanitários utilizados em citros para Apis mellifera. Ciência Rural 39, 955–961 (2009).

    CAS  Article  Google Scholar 

  • 50.

    Tomé, H. V. V., Barbosa, W. F., Martins, G. F. & Guedes, R. N. C. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere 124, 103–109 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 51.

    Kaplan, E. L. & Meier, P. Non parametric estimation from incomplete observation. J. Am. Stat. Assoc. 53, 457–481 (1958).

    MATH  Article  Google Scholar 

  • 52.

    Therneau, T. M. A Package for Survival Analysis in R. R package version 3.2-7. https://CRAN.R-project.org/package=survival (2020).

  • 53.

    Agresti, A. Categorical Data Analysis (Wiley, New York, 2002).

    Google Scholar 

  • 54.

    Christensen, R. H. B. Ordinal-Regression Models for Ordinal Data. R package version 2019.12-10. https://CRAN.R-project.org/package=ordina (2019).

  • 55.

    Russell, L. R Package ’emmeans’: Estimated Marginal Means, aka Least-Squares Means. https://github.com/rvlenth/emmeans (2020).


  • Source: Ecology - nature.com

    Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats

    Reductions in CFC-11 emissions put ozone recovery back on track