in

Potential impacts of polymetallic nodule removal on deep-sea meiofauna

  • 1.

    Hein, J. R., Mizell, K., Koschinsky, A. & Conrad, T. A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 51, 1–14 (2013).

    Article 

    Google Scholar 

  • 2.

    Petersen, S. et al. News from the seabed—Geological characteristics and resource potential of deep-sea mineral resources. Mar. Policy 70, 175–187 (2016).

    Article 

    Google Scholar 

  • 3.

    Dutkiewicz, A., Judge, A. & Müller, R. D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean. Geology 48, 293–297 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Verlaan, P. A. & Cronan, D. S. Origin and variability of resource-grade marine ferromanganese nodules and crusts in the Pacific Ocean: A review of biogeochemical and physical controls. Geochemistry https://doi.org/10.1016/j.chemer.2021.125741 (2021).

    Article 

    Google Scholar 

  • 5.

    Radziejewska, T. & Stoyanova, V. Abyssal epibenthic megafauna of the Clarion-Clipperton area (NE Pacific): Changes in time and space versus anthropogenic environmental disturbance. Oceanol. Stud. 29, 83–101 (2000).

    Google Scholar 

  • 6.

    Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L. & Arbizu, P. M. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 1–6 (2016).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Washburn, T. W. et al. Patterns of macrofaunal biodiversity across the Clarion-Clipperton zone: An area targeted for seabed mining. Front. Mar. Sci. 8, 626571 (2021).

    Article 

    Google Scholar 

  • 9.

    Bonifácio, P., Martinez Arbizu, P. & Menot, L. Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion-Clipperton Fracture Zone (equatorial Pacific). Biogeosciences 17, 865–886 (2020).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Ansari, Z. A. Distribution of deep-sea benthos in the proposed mining area of Central Indian Basin. Mar. Georesour. Geotechnol. 18, 201–207 (2000).

    Article 

    Google Scholar 

  • 11.

    Pasotti, F. et al. A local scale analysis of manganese nodules influence on the Clarion-Clipperton Fracture Zone macrobenthos. Deep Sea Res. Part Oceanogr. Res. Pap. 168 (2021).

  • 12.

    Hauquier, F. et al. Geographic distribution of free-living marine nematodes in the Clarion-Clipperton Zone: Implications for future deep-sea mining scenarios. Biogeosciences 16, 3475–3489 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Kuhn, T., Uhlenkott, K., Vink, A., Rühlemann, C. & Martinez Arbizu, P. Manganese nodule fields from the Northeast Pacific as benthic habitats. In Seafloor Geomorphology as Benthic Habitat 2nd edn (eds Harris, P. T. & Baker, E.) 933–947 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-814960-7.00058-0.

    Chapter 

    Google Scholar 

  • 14.

    Miljutina, M. A., Miljutin, D. M., Mahatma, R. & Galéron, J. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Mar. Biodivers. 40, 1–15 (2010).

    Article 

    Google Scholar 

  • 15.

    Mahatma, R. Meiofauna Communities of the Pacific Nodule Province: Abundance, Diversity and Community Structure (University of Oldenburg, 2009).

    Google Scholar 

  • 16.

    Singh, R. et al. Nematode communities inhabiting the soft deep-sea sediment in polymetallic nodule fields: Do they differ from those in the nodule-free abyssal areas?. Mar. Biol. Res. 12, 1–15 (2016).

    Article 

    Google Scholar 

  • 17.

    Thiel, H., Schriever, G., Bussau, C. & Borowski, C. Manganese nodule crevice fauna. Deep Sea Res. Part Oceanogr. Res. Pap. 40, 419–423 (1993).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Bussau, C., Schriever, G. & Thiel, H. Evaluation of abyssal metazoan meiofauna from a manganese nodule area of the Eastern South Pacific. Vie Milieu 45, 39–48 (1995).

    Google Scholar 

  • 19.

    Oebius, H. U., Becker, H. J., Rolinski, S. & Jankowski, J. A. Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 3453–3467 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Levin, L. A. et al. Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar. Policy 74, 245–259 (2016).

    Article 

    Google Scholar 

  • 21.

    Global Sea Mineral Resources. Environmental Impact Statement—Small-scale testing of nodule collector components on the seafloor of the Clarion-Clipperton Fracture Zone and its environmental impact. 337 (2018).

  • 22.

    Durden, J. M. et al. A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model. Mar. Policy 84, 193–201 (2017).

    Article 

    Google Scholar 

  • 23.

    Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS One 12, e0171750 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Jones, D. O. B., Ardron, J. A., Colaço, A. & Durden, J. M. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Mar. Policy https://doi.org/10.1016/j.marpol.2018.10.025 (2018).

    Article 

    Google Scholar 

  • 25.

    Boschen, R. E. et al. A primer for use of genetic tools in selecting and testing the suitability of set-aside sites protected from deep-sea seafloor massive sulfide mining activities. Ocean Coast. Manag. 122, 37–48 (2016).

    Article 

    Google Scholar 

  • 26.

    Boucher, G. & Lambshead, P. J. D. Ecological biodiversity of marine nematodes in samples from temperate, tropical and deep-sea regions. Conserv. Biol. 9, 1594–1604 (1995).

    Article 

    Google Scholar 

  • 27.

    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Rex, M. A. & Etter, R. J. Deep-Sea Biodiversity: Pattern and Scale (Harvard University Press, 2010).

    Google Scholar 

  • 29.

    Paterson, G. L. J. et al. Biogeography and connectivity in deep-sea habitats with mineral resource potential: A gap analysis. Deliverable 4.2. MIDAS (2014).

  • 30.

    Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a prospective abyssal mine field. Curr. Biol. 29, 3909–3912 (2019).

    PubMed 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci. Rep. 6, 30492 (2016).

    ADS 
    PubMed 
    PubMed Central 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Goineau, A. & Gooday, A. J. Diversity and spatial patterns of foraminiferal assemblages in the eastern Clarion-Clipperton zone (abyssal eastern equatorial Pacific). Deep Sea Res. Part Oceanogr. Res. Pap. 149, 103036 (2019).

    Article 

    Google Scholar 

  • 33.

    Macheriotou, L., Rigaux, A., Derycke, S. & Vanreusel, A. Phylogenetic clustering and rarity imply risk of local species extinction in prospective deep-sea mining areas of the Clarion-Clipperton Fracture Zone. Proc. R. Soc. B Biol. Sci. 287, 20192666 (2020).

    Article 

    Google Scholar 

  • 34.

    Błażewicz, M., Jóźwiak, P., Menot, L. & Pabis, K. High species richness and unique composition of the tanaidacean communities associated with five areas in the Pacific polymetallic nodule fields. Prog. Oceanogr. 176, 102141 (2019).

    Article 

    Google Scholar 

  • 35.

    Janssen, A. et al. A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal pacific polymetallic nodule fields. PLoS One 10, e0117790 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Soetaert, K. & Heip, C. Sample-size dependence of diversity indexes and the determination of sufficient sample size in a high-diversity deep-sea environment. Mar. Ecol. Prog. Ser. 59, 305–307 (1990).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Rose, A. et al. A method for comparing within-core alpha diversity values from repeated multicorer samplings, shown for abyssal Harpacticoida (Crustacea: Copepoda) from the Angola Basin. Org. Divers. Evol. 5, 3–17 (2005).

    Article 

    Google Scholar 

  • 38.

    George, K. H. et al. Community structure and species diversity of Harpacticoida (Crustacea: Copepoda) at two sites in the deep sea of the Angola Basin (Southeast Atlantic). Org. Divers. Evol. 14, 57–73 (2014).

    Article 

    Google Scholar 

  • 39.

    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).

    PubMed 
    PubMed Central 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).

    Article 

    Google Scholar 

  • 41.

    Turner, P. J., Campbell, L. M. & Van Dover, C. L. Stakeholder perspectives on the importance of rare-species research for deep-sea environmental management. Deep Sea Res. Part Oceanogr. Res. Pap. 125, 129–134 (2017).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Drury, W. H. Rare species. Biol. Conserv. 6, 162–169 (1974).

    Article 

    Google Scholar 

  • 43.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide for Software and Statistical Methods (Primer-E Ltd, 2008).

    Google Scholar 

  • 44.

    Gollner, S. et al. Resilience of benthic deep-sea fauna to mining activities. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2017.04.010 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Glover, A. G. et al. Polychaete species diversity in the central Pacific abyss: Local and regional patterns, and relationships with productivity. Mar. Ecol. Prog. Ser. 240, 157–170 (2002).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Rosli, N., Leduc, D., Rowden, A. & Robert, K. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar. Biodivers. 18, 13–34 (2018).

    Article 

    Google Scholar 

  • 47.

    Gallucci, F., Moens, T. & Fonseca, G. Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar. Biodivers. 39, 9–25 (2009).

    Article 

    Google Scholar 

  • 48.

    Wieser, W. Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden Eine ökologisch-morphologische Studie. Ark. För Zool. 4, 439–483 (1953).

    Google Scholar 

  • 49.

    Leduc, D. Description of Oncholaimus moanae sp. nov. (Nematoda: Oncholaimidae), with notes on feeding ecology based on isotopic and fatty acid composition. J. Mar. Biol. Assoc. U. K. 89, 337–344 (2008).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Pape, E., van Oevelen, D., Moodley, L., Soetaert, K. & Vanreusel, A. Nematode feeding strategies and the fate of dissolved organic matter carbon in different deep-sea sedimentary environments. Deep Sea Res. Part Oceanogr. Res. Pap. 80, 94–110 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 51.

    Schuelke, T., Pereira, T. J., Hardy, S. M. & Bik, H. M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol. Ecol. 27, 1930–1951 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    Tully, B. J. & Heidelberg, J. F. Microbial communities associated with ferromanganese nodules and the surrounding sediments. Extreme Microbiol. 4, 161 (2013).

    Google Scholar 

  • 53.

    Blöthe, M. et al. Manganese-cycling microbial communities inside deep-sea manganese nodules. Environ. Sci. Technol. 49, 7692–7700 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Maybury, C. Crevice Foraminifera from abyssal South East Pacific manganese nodules. In Microfossils and Oceanic Environments (eds Moguilevsky, A. & Whatley, R.) (University of Wales, 1996).

    Google Scholar 

  • 55.

    Pape, E., Bezerra, T. N., Hauquier, F. & Vanreusel, A. Limited spatial and temporal variability in meiofauna and nematode communities at distant but environmentally similar sites in an area of interest for deep-sea mining. Front. Mar. Sci. 4, 205 (2017).

    Article 

    Google Scholar 

  • 56.

    Uhlenkott, K., Vink, A., Kuhn, T. & Arbizu, P. M. Meiofauna in a potential deep-sea mining area—Influence of temporal and spatial variability on small-scale abundance models. Diversity 13, 3 (2021).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Veillette, J., Juniper, S. K., Gooday, A. J. & Sarrazin, J. Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Res. Part Oceanogr. Res. Pap. 54, 1936–1943 (2007).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Tilot, V., Ormond, R., Moreno Navas, J. & Catalá, T. S. The Benthic Megafaunal Assemblages of the CCZ (Eastern Pacific) and an approach to their management in the face of threatened anthropogenic impacts. Front. Mar. Sci. 5, 7 (2018).

    Article 

    Google Scholar 

  • 59.

    ISA. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area (2020).

  • 60.

    ISA. Draft regulations on exploitation of mineral resources in the Area (2019).

  • 61.

    ISA. Environmental Management Plan for the Clarion-Clipperton Zone (2011).

  • 62.

    Wedding, L. M. et al. From principles to practice: A spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).

    CAS 
    Article 

    Google Scholar 

  • 63.

    ISA. Deep CCZ Biodiversity Synthesis Workshop Report. 206 (2020).

  • 64.

    McQuaid, K. A. et al. Using habitat classification to assess representativity of a protected area network in a large, data-poor area targeted for deep-sea mining. Front. Mar. Sci. 7, 558860 (2020).

    Article 

    Google Scholar 

  • 65.

    Mullineaux, L. S. The role of settlement in structuring a hard-substratum community in the deep sea. J. Exp. Mar. Biol. Ecol. 120, 247–261 (1988).

    Article 

    Google Scholar 

  • 66.

    Cuvelier, D. et al. Potential mitigation and restoration actions in ecosystems impacted by seabed mining. Front. Mar. Sci. 5, 467 (2018).

    Article 

    Google Scholar 

  • 67.

    De Smet, B. et al. The community structure of deep-sea macrofauna associated with polymetallic nodules in the eastern part of the Clarion-Clipperton fracture zone. Front. Mar. Sci. 4, 103 (2017).

    Google Scholar 

  • 68.

    Bezerra, T. N. et al. Nemys: World Database of Nematodes. http://nemys.ugent.be. https://doi.org/10.14284/366 (2021).

  • 69.

    George, K.-H. Gemeinschaftsanalytische Untersuchungen der Harpacticoidenfauna der Magellanregion, sowie erste similaritätsanalytische Vergleiche mit Assoziationen aus der Antarktis = Community analysis of the harpacticoid fauna of the Magellan Region, as well as first comparisons with antarctic associations, based on similarity analyses. Berichte Zur Polarforsch. Rep. Polar Res. 327, 1–187 (1999).

    Google Scholar 

  • 70.

    Moens, T. & Vincx, M. Observations on the feeding ecology of estuarine nematodes. J. Mar. Biol. Assoc. U. K. 77, 211–227 (1997).

    Article 

    Google Scholar 

  • 71.

    Guilini, K., Van Oevelen, D., Soetaert, K., Middelburg, J. J. & Vanreusel, A. Nutritional importance of benthic bacteria for deep-sea nematodes from the Arctic ice margin: Results of an isotope tracer experiment. Limnol. Oceanogr. 55, 1977–1989 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 72.

    Clarke, K. & Gorley, R. PRIMER v6: User Manual/Tutorial (Primer-E Ltd, 2006).

    Google Scholar 

  • 73.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    Google Scholar 

  • 74.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • 75.

    Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’ (2019).

  • 76.

    Oksanen, J. et al. vegan: Community Ecology Package (2019).

  • 77.

    Martinez Arbizu, P. M. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis (2017).

  • 78.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar 

  • 79.

    Hsieh, T. C. & Chao, A. Package iNEXT 2.0.19: Interpolation and extrapolation of species diversity (2019).

  • 80.

    Schenker, N. & Gentleman, J. F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 55, 182–186 (2001).

    MathSciNet 
    Article 

    Google Scholar 

  • 81.

    Gehlenborg, N. UpSetR: A More Scalable Alternative to Venn and Euler Diagrams for Visualizing Intersecting Sets (2019).

  • 82.

    Simpson, G. L. permute: Functions for Generating Restricted Permutations of Data (2019).

  • 83.

    Baselga, A., Orme, D., Villeger, S., Bortoli, J. D. & Leprieur, F. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components (2018).


  • Source: Ecology - nature.com

    Phytoplankton biodiversity and the inverted paradox

    Rover images confirm Jezero crater is an ancient Martian lake