Pianka, E. R. Niche relations of desert lizards in Ecology and Evolution of Communities, Cody, M. L. & Diamond, J. M. (Eds). (Harvard University Press, 1975).
Castilla, A. M. & Labra, A. Predation and spatial distribution of the lizard Podarcis hipanica atrata: an experimental approach. Acta Oecol. 19, 107–114 (1998).
Google Scholar
Cantwell, L. R. & Forrest, T. G. Response of Anolis sagrei to acoustic calls from predatory and non-predatory birds. J. Herpetol. 47, 293–298 (2013).
Google Scholar
Edmund, M. Defense in animals: A survey of antipredator defenses. (Longman Press, 1974).
Wilcove, D. Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66, 121l-l214 (1985).
Google Scholar
Endler, J. A. Defense against predators in Predator-prey relationships, Feder, M. E. & Lauder, G. V. (Eds). (The University of Chicago Press, 1986).
Constantini, D., Bruner, E., Fanfani, A. & Dell’Omo, G. Male-biased predation of western green lizards by Eurasian kestrels. Naturwissenschaften 94, 1015–1020. https://doi.org/10.1007/s00114-007-0284-5 (2007).
Google Scholar
Barnett, A. A. et al. Run, hide or fight: anti-predation strategies in Endangered red-nosed cuxiú (Chiropotes albinasus, Pitheciidae) in south-eastern Amazonia. Primates 58, 353–360. https://doi.org/10.1007/s10329-017-0596-9 (2017).
Google Scholar
Barnett, A. A. et al. Honest error, precaution or alertness advertisement? Reactions to vertebrate pseudopredators in red-nosed cuxiús (Chiropotes albinasus), a high-canopy neo-tropical primate. Ethology 124, 177–187. https://doi.org/10.1111/eth.12721 (2018).
Google Scholar
Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).
Google Scholar
Shepard, D. B. Habitat but not body shape affects predator attack frequency on lizard models in the Brazilian Cerrado. Herpetologica 63, 193–202. https://doi.org/10.1655/0018-0831(2007)63[193:HBNBSA]2.0.CO;2 (2007).
Google Scholar
Salvidio, S., Costa, A. & Romano, A. The use of clay models in amphibian field studies: a short review. Bull. Env. Life Sc. 1, 8 (2019).
Castilla, A. M., Gosá, A., Galán, P. & Pérez-Mellado, V. Green tails in lizards of the genus Podarcis: do they influence the intensity of predation?. Herpetologica 55, 530–537 (1999).
Bateman, P. W., Fleming, P. A. & Wolfe, A. K. A different kind of ecological modelling: the use of clay model organisms to explore predator-prey interactions in vertebrates. J. Zool. 301, 251–262. https://doi.org/10.1111/jzo.12415 (2017).
Google Scholar
Rössler, D., Pröhl, H. & Lötters, S. The future of clay model studies. BMC Zool. 3, 6. https://doi.org/10.1186/s40850-018-0033-6 (2018).
Google Scholar
Major, R. E. & Kendal, C. E. The contribution of artificial nest experiments to understanding avian reproductive success: a review of methods and conclusions. Ibis 138, 298–307 (1996).
Google Scholar
Kuchta, S. R. Experimental support for aposematic coloration in the salamander Ensatina eschscholtzii xanthoptica: implications for mimicry of Pacific newts. Copeia 267–271, 2005. https://doi.org/10.1643/CH-04-173R (2005).
Google Scholar
Kraemer, A. C., Serb, J. M. & Adams, D. C. Both novelty and conspicuousness influence selection by mammalian predators on the colour pattern of Plethodon cinereus (Urodela: Plethodontidae). Biol. J. Linn. Soc. 118, 889–900. https://doi.org/10.1111/bij.12780 (2016).
Google Scholar
Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 104, 3–4. https://doi.org/10.1007/s00114-017-1443-y (2017).
Google Scholar
Mcelroy, M. T. Teasing apart crypsis and aposematism-evidence that disruptive coloration reduces predation on a noxious toad. Biol. J. Linn. Soc. 17, 285–294. https://doi.org/10.1111/bij.12669 (2016).
Google Scholar
Nordberg, E. J. & Schwarzkopf, L. Predation risk is a function of alternative prey availability rather than predator abundance in a tropical savanna woodland ecosystem. Sci. Rep. 9, 7718. https://doi.org/10.1038/s41598-019-44159-6 (2019).
Google Scholar
Costa, A., Coroller, S. & Salvidio, S. Comparing day and night predation rates on lizard-Like clay models. Herpetol. Conserv. Biol. 15, 198–203 (2020).
Nour, N., Matthysen, E. & Dhondt, A. A. Artificial nest predation and habitat fragmentation: different trends in birds and mammal predators. Ecography 16, 111–116 (1993).
Google Scholar
Castilla, A. M. Intensive predation of Audouin’s Gull nests by the yellow legged gull in the Columbretes islands. Colon Waterbirds 18, 226–230. https://doi.org/10.2307/1521487 (1995).
Google Scholar
Diego-Rasilla, F. J. Influence of predation pressure on the escape behaviour of Podarcis muralis lizards. Behav. Processes 63, 1–7. https://doi.org/10.1016/S0376-6357(03)00026-3 (2003).
Google Scholar
Stuart-fox, D. M., Moussalli, A., Marshall, N. J. & Owens, I. P. F. Conspicuous males suffer higher predation risk: Visual modeling and experimental evidence from lizards. Anim. Behav. 66, 541–550. https://doi.org/10.1006/anbe.2003.2235 (2003).
Google Scholar
Husak, J. F., Macedonia, J. M., Fox, S. F. & Sauceda, R. C. Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): an experimental test using clay-covered model lizards. Ethology 112, 572–580. https://doi.org/10.1111/j.1439-0310.2005.01189.x (2006).
Google Scholar
Keehn, J. E. & Feldman, C. R. Predator attack rates and anti-predator behavior of Side-blotched Lizards (Uta stransbuiana) at Southern California Wind Farms, USA. Herpetol. Conserv. Biol. 13, 194–204 (2018).
Hansen, N. A., Sato, C. F., Michael, D. L., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).
Google Scholar
Hegna, R. H., Saporito, R. A., Gerow, K. G. & Donnelly, M. A. Contrasting colours in an aposematic frog do not affect predation. Ann. Zool. 48, 29–38. https://doi.org/10.5735/086.048.0103 (2011).
Google Scholar
Paluh, D. J., Hantak, M. M. & Saporito, R. A. A test of aposematism in the dendrobatid poison frog Oophaga pumilio: the importance of movement in clay model experiments. J. Herpetol. 48, 249–254. https://doi.org/10.1670/13-027 (2014).
Google Scholar
Rojas, D. P., Stow, A., Amézquita, A., Simões, P. I. & Lima, A. P. No predatory bias with respect to colour familiarity for the aposematic Adelphobates galactonotus (Anura: Dendrobatidae). Behaviour 152, 1637–165. https://doi.org/10.1163/1568539X-00003297 (2015).
Google Scholar
Brodie, E. D. I. I. I. Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution 47, 227–235. https://doi.org/10.1111/j.1558-5646.1993.tb01212.x (1993).
Google Scholar
Brodie, E. D. I. I. I. & Janzen, F. J. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9, 186–190. https://doi.org/10.2307/2390563 (1995).
Google Scholar
Pfennig, D. W., Harper, G. R. Jr., Brumo, A. F., Harcombe, W. R. & Pfennig, K. S. Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behav. Ecol. Sociobiol. 61, 505–511. https://doi.org/10.1007/s00265-006-0278-x (2006).
Google Scholar
Martín, J. & López, P. An experimental test of the costs of antipredatory refuge use in the wall lizard, Podarcis muralis. Oikos 84, 499–505 (1999).
Google Scholar
Amo, L., López, P. & Martín, J. Refuge use: a conflict between avoiding predation and losing mass in lizards. Physiol. Behav. 90, 334–343. https://doi.org/10.1016/j.physbeh.2006.09.035 (2007).
Google Scholar
Endler, J. A. Interactions between predators and prey in Behavioural Ecology: An Evolutionary Approach, Krebs, J. R. & Davies, N. B., (Eds). (Blackwell, 1991).
Denno, R. F., Finke, D. L. & Langellotto, G. A. Direct and indirect effects of vegetation structure and habitat complexity on predator-prey and predator-predator interactions in Ecology of Predator-prey Interactions, Barbosa, P. & Castellanos, I. (Eds). (Oxford University Press, 2005).
Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The evolutionary ecology of crypsis, warning signals, and mimicry. (Oxford University Press, 2004).
Sih, A. To hide or not to hide? Refuge use in a fluctuating environment. Trends Ecol. Evol. 12, 375–6 (1997).
Google Scholar
Martín, J., López, P. & Cooper, W. E. Jr. When to come out from a refuge: balancing predation risk and foraging opportunities in an alpine lizard. Ethology 109, 77–87. https://doi.org/10.1046/j.1439-0310.2003.00855.x (2003).
Google Scholar
Bulova, S. J. Ecological correlates of population and individual variation in antipredator behaviour of two species of desert lizards. Copeia 4, 980–992. https://doi.org/10.2307/1446721 (1994).
Google Scholar
Vanhooydonck, B. & Van Damme, R. Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Func. Ecol. 17, 160–169. https://doi.org/10.1046/j.1365-2435.2003.00716.x (2003).
Google Scholar
Vervust, B., Grbac, I. L. & Van Damme, R. Differences in morphology, performance and behavior between recently diverged populations of Podarcis sicula mirror differences in predation pressure. Oikos 116, 1343–1352. https://doi.org/10.1111/j.2007.0030-1299.15989.x (2007).
Google Scholar
Smith, G. R. & Ballinger, R. E. The ecological consequences of habitat and microhabitat use in lizards: a review. Contemp. Herpetol. 3, 1–13. https://doi.org/10.1002/3527600213.ch1 (2001).
Google Scholar
Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. Roy. Soc. London 271, 2495–2499. https://doi.org/10.1098/rspb.2004.2894 (2004).
Google Scholar
Worthington-Hill, O. & Gill, A. Effects of large-scale heathland management on thermal regimes and predation on adders Vipera berus. Anim. Conserv. 22, 481–492. https://doi.org/10.1111/acv.12489 (2019).
Google Scholar
Chiang, J. C. H. & Koutavas, A. Tropical flip-flop connection. Nature 432, 684–685. https://doi.org/10.1038/432684a (2004).
Google Scholar
Carmo, R. F. R., Amorim, H. P. & Vasconcelos, S. D. Scorpion diversity in two types of seasonally dry tropical forest in the semi-arid region of Northeastern Brazil. Biota. Neotrop. 13, 340–344. https://doi.org/10.1590/S1676-06032013000200037 (2013).
Google Scholar
Warrick, G. D., Kato, T. T. & Rose, B. R. Microhabitat use and home range characteristics of Blunt-nosed leopard lizards. J. Herpetol. 32, 183–191 (1998).
Google Scholar
Constantini, D. & Dell’Omo, G. Sex-Specific predation on two lizard species by kestrels. Russ. J. Ecol. 41, 99–101. https://doi.org/10.1134/S1067413610010182 (2010).
Google Scholar
Poulin, B. et al. Avian predation upon lizards and frogs in a neotropical forest understory. J. Trop. Ecol. 17, 21–40. https://doi.org/10.1017/S026646740100102X (2001).
Google Scholar
Araújo, C. S., Candido, D. M., Araújo, H. F. P., Dias, S. C. & Vasconcellos, A. Seasonal variations in scorpion activities (Arachnida: Scorpiones) in an area of Caatinga vegetation in Northeastern Brazil. Zoologia 27, 372–376. https://doi.org/10.1590/S1984-46702010000300008 (2010).
Google Scholar
Vasconcellos, A. et al. Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Rev. Bras. Entomol. 54, 471–476. https://doi.org/10.1590/S0085-56262010000300019 (2010).
Google Scholar
Schall, J. J. & Pianka, E. R. Evolution of escape behavior diversity. Am. Nat. 115, 551–566 (1980).
Google Scholar
Martín, J. & López, P. Influence of habitat structure on the escape tactics of the lizard Psammodromus algirus. Can. J. Zool. 73, 129–132 (1995).
Google Scholar
Rocha, C. F. D. & Bergallo, H. G. Intercommunity variation in the distribution of abundance of dominant lizard species in restinga habitats. Ciencia e Cultura 49, 269–274 (1997).
Van-Sluys, M. Growth and body condition of the saxicolous lizard Tropidurus itambere in southeastern Brazil. J. Herpetol. 32, 359–365 (1998).
Google Scholar
Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: evidence from remote video cameras in arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
DeGregorio, B. A., Weatherhead, P. J. & Sperry, J. H. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity. Ecol. Evol. 4, 1589–1600. https://doi.org/10.1002/ece3.1049 (2014).
Google Scholar
Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).
Google Scholar
Greene, H. W. Antipredator mechanisms in reptiles in Biology of Reptilian, Gans, C. & Huey, R. B. (Eds.). (Springer, 1998).
Martín, J. & López, P. Amphibians and reptiles as prey of birds in southwestern Europe. Smit. Herpetol. Inform. Serv. 82, 1–43 (1990).
Steffen, J. E. Perch-height specific predation on tropical lizard clay models: implications for habitat selection in mainland neotropical lizards. Rev. Biol. Trop. 57, 859–864. https://doi.org/10.15517/rbt.v57i3.5498 (2009).
Google Scholar
Dunham, A. E., Grant, B. W. & Overall, K. L. Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62, 335–355 (1989).
Google Scholar
Ruiz-Esparza, J. et al. Birds of the Grota do Angico Natural Monument in the semi-arid Caatinga scrublands of northeastern Brazil. Biota. Neotrop. 11, 1–8. https://doi.org/10.1590/S1676-06032011000200027 (2011).
Google Scholar
Lima, C. P., Santos, S. S. & Lima, R. C. Levantamento e Anilhamento da Ornitofauna na Pátria da Arara-Azul-de-Lear (Anodorhynchus leari, Bonaparte, 1856): um complemento ao Levantamento realizado por Sick, H., Gonzaga, L. P. e Teixeira, D. M., 1987. Atual. Ornitol. 112, 11–22 (2003).
Roos, A. L. et al. Avifauna da região do Lago de Sobradinho: composição, riqueza e biologia. Ornithologia 1, 135–160 (2006).
Farias, G. B., Pereira, G. P. & Burgos, K. Q. Aves da Floresta Nacional de Negreiros (Serrita, Pernambuco). Atual. Ornitol. 157, 41–46 (2010).
Sousa, P. A. G. & Freire, E. M. X. Coleodactylus natalensis (NCN). Predation. Herpetol. Rev. 41, 218 (2010).
Ribeiro, L. B., Gogliath, M. & Freire, E. M. X. Hemidactylus brasilianus (Amaral’s Brazilian Gecko) and Cnemidophorus ocellifer (Spix`s Whiptail). Predation. Herpetol. Bull. 117, 31–32 (2011).
De-Carvalho, C. B. et al. Gymnodactylus geckoides (Naked-Toed Gecko): Predation. Herpetol. Bull. 121, 41–43 (2012).
McCormick, S. & Polis, G. A. Arthropods that prey on vertebrates. Biol. Rev. 57, 29–58 (1982).
Google Scholar
Rocha, C. F. D. & Vrcibradic, D. Reptiles as predators of vertebrates and as preys in a restinga habitat of southeastern Brazil. Ciencia e Cultura 50, 364–368 (1998).
Armas, L. F. Frogs and lizards as prey of some Greater Antillean arachnids. Rev. Iberica Aracnol. 3, 87–88 (2000).
Schatz, B., Suzzoni, J. P., Corbara, B. & Dejean, A. Selection and capture of prey in the African ponerine ant Plectroctena minor (Hymenoptera: formicidae). Acta Oecol. 22, 55–60. https://doi.org/10.1016/S1146-609X(00)01100-0 (2001).
Google Scholar
Nordberg, E. J., Edwards, L. & Schwarzkopf, L. Terrestrial invertebrates: an underestimated predator guild for small vertebrate groups. Food Webs 15, e00080 (2018).
Google Scholar
Seifert, C. L., Schulze, C. H., Dreschke, T. C. T., Frötscher, H. & Fiedler, K. Day vs. night predation on artificial caterpillars in primary rainforest habitats-an experimental approach. Entomol. Exp. Appl. 158, 54–59. https://doi.org/10.1111/eea.12379 (2016).
Google Scholar
Andrade, L. A., Pereira, I. M., Leite, U. T. & Barbosa, M. R. V. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, estado da Paraíba. Cerne 11, 253–262 (2005).
Castelletti, C. H. M., Silva, J. M. C., Tabarelli, M. & Santos, A. M. M. Quanto ainda resta da Caatinga? Uma estimative preliminar in Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação, Silva, J. M. C., Tabarelli, M., Fonseca, M. T. & Lins, L. V. (Eds.). (Ministério do Meio Ambiente Publishing, 2004).
Albuquerque, U. P. et al. Caatinga revisited: ecology and conservation of an important seasonal dry forest. Sci. World J. 1–18, 2012. https://doi.org/10.1100/2012/205182 (2012).
Google Scholar
Da Silva, A. C. C., Prata, A. P. N. & Mello, A. A. Flowering plants of the Grota do Angico Natural Monument, Caatinga of Sergipe, Brazil. Check List 9, 733–739 (2013).
Google Scholar
Nimer, E. Climatologia da Região Nordeste do Brasil: Introdução à Climatologia Dinâmica. Rev. Bras. Geog. 34, 3–51 (1972).
Santos, A. F. & Andrade, J. A. O quadro natural: caracterização e delimitação do semi-árido sergipano. Sergipe. Brazil. (CNPq/UFS, 1992).
SEMARH–Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos. Plano de Manejo do Monumento Natural Grota do Angico. Sergipe, Brazil. (Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos, 2011)
Ferreira, A. S., Silva, A. O., Conceição, B. M. & Faria, R. G. The diet of six species of lizards in an area of Caatiga, Brazil. Herpetol. J. 27, 151–160 (2017).
Rocha, S. M. et al. Lizards from the Alto Sertão region of Sergipe state, northeastern Brazil. Biota Neotrop. 21(2), e20201137 (2021).
Google Scholar
Bennett, A. T. D., Cuthill, I. C. & Norris, K. J. Sexual selection and the mismeasure of color. Am. Nat. 144, 848–860 (1994).
Google Scholar
Niskanen, M. & Mappes, J. Significance of the dorsal zigzag pattern of Vipera latastei gaditana against avian predators. J. Anim. Ecol. 74, 1091–1101. https://doi.org/10.1111/j.1365-2656.2005.01008.x (2005).
Google Scholar
R Core Team. R: A language and environment for statistical computing (2020).
Source: Ecology - nature.com