in

Primer evaluation and development of a droplet digital PCR protocol targeting amoA genes for the quantification of Comammox in lakes

  • 1.

    Vitousek, P. M. et al. The Nitrogen Cycle at Regional to Global Scales 1–45 (Springer, New York, 2002).

    Google Scholar 

  • 2.

    Stein, L. Y. & Klotz, M. G. The nitrogen cycle. Curr. Biol. CB 26, R94–R98 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Winogradsky, S. On the nitrifying organisms. Sciences 110, 1013–1016 (1890).

    Google Scholar 

  • 5.

    Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 6.

    Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Pester, M. et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ. Microbiol. 16, 3055–3071 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Gruber-Dorninger, C. et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 9, 643–655 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Bartelme, R. P., McLellan, S. L. & Newton, R. J. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and Comammox Nitrospira. Front. Microbiol. 8, 101 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Wang, Y. et al. Comammox in drinking water systems. Water Res. 116, 332–341 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Pinto, A. J. et al. Metagenomic evidence for the presence of Comammox Nitrospira-like bacteria in a drinking water system. mSphere 1 (2016).

  • 15.

    Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Beach, N. K. & Noguera, D. R. Design and assessment of species-level qPCR primers targeting Comammox. Front. Microbiol. 10, 36 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Hu, H.-W. & He, J.-Z. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J. Soils Sediments 17, 2709–2717 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (Comammox). Appl. Environ. Microbiol. 84, e01390-18 (2018).

  • 19.

    Jiang, Q., Xia, F., Zhu, T., Wang, D. & Quan, Z. Distribution of comammox and canonical ammonia-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary at different depths over four seasons. J. Appl. Microbiol. 127, 533–543 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Liu, S. et al. Comammox Nitrospira within the Yangtze River continuum: Community, biogeography, and ecological drivers. ISME J. 14, 2488–2504 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Xu, Y. et al. Diversity and abundance of comammox bacteria in the sediments of an urban lake. J. Appl. Microbiol. 128, 1647–1657 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Lu, S., Sun, Y., Lu, B., Zheng, D. & Xu, S. Change of abundance and correlation of Nitrospira inopinata-like comammox and populations in nitrogen cycle during different seasons. Chemosphere 241, 125098 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Boehrer, B. & Schultze, M. Stratification of lakes. Rev. Geophys. 46, RG2005 (2008).

  • 24.

    Hou, J., Song, C., Cao, X. & Zhou, Y. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res. 47, 2285–2296 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Alfreider, A. et al. CO2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environ. Microbiol. 19, 2754–2768 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Alfreider, A. et al. Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiol. Ecol. 94, fiy163 (2018).

  • 27.

    Herber, J. et al. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ. Microbiol. 22, 212–228 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Rotthauwe, J.-H., Witzel, K.-P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Junier, P. et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85, 425–440 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Alves, R. J. E., Minh, B. Q., Urich, T., von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, 1517 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Linhart, C. & Shamir, R. The degenerate primer design problem: Theory and applications. J. Comput Biol. 12, 431–456 (2005).

  • 33.

    Alfreider, A. & Tartarotti, B. Spatiotemporal dynamics of different CO2 fixation strategies used by prokaryotes in a dimictic lake. Sci. Rep. 9, 15068 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Luesken, F. A. et al. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl. Microbiol. Biotechnol. 92, 845–854 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Wu, D. Y., Ugozzoli, L., Pal, B. K., Qian, J. I. N. & Wallace, R. B. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 10, 233–238 (1991).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Daims, H., Lücker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Callieri, C., Hernández-Avilés, S., Salcher, M. M., Fontaneto, D. & Bertoni, R. Distribution patterns and environmental correlates of Thaumarchaeota abundance in six deep subalpine lakes. Aquat. Sci. 78, 215–225 (2016).

    CAS  Article  Google Scholar 

  • 40.

    Coci, M., Odermatt, N., Salcher, M. M., Pernthaler, J. & Corno, G. Ecology and distribution of Thaumarchaea in the deep hypolimnion of Lake Maggiore. Archaea 2015, 1–11 (2015).

    Article  Google Scholar 

  • 41.

    Auguet, J.-C., Triadó-Margarit, X., Nomokonova, N., Camarero, L. & Casamayor, E. O. Vertical segregation and phylogenetic characterization of ammonia-oxidizing archaea in a deep oligotrophic lake. ISME J. 6, 1786–1797 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Vissers, E. W. et al. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiol. Ecol. 83, 515–526 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Vissers, E. W. Spatial and Temporal Dynamics of Thaumarchaeota in Deep European Lakes (Netherlands Institute of Ecology, 2012).

  • 44.

    Small, G. E. et al. Rates and controls of nitrification in a large oligotrophic lake. Limnol. Oceanogr. 58, 276–286 (2013).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Lavrentyev, P. J., Gardner, W. S. & Johnson, J. R. Cascading trophic effects on aquatic nitrification: Experimental evidence and potential implications. Aquat. Microb. Ecol. 13, 161–175 (1997).

    Article  Google Scholar 

  • 46.

    Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification?. Trends Microbiol. 14, 213–219 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: Insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Schramm, A., de Beer, D., Gieseke, A. & Amann, R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ. Microbiol. 2, 680–686 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Nowka, B., Off, S., Daims, H. & Spieck, E. Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages. FEMS Microbiol. Ecol. 91, fiu031 (2015).

  • 50.

    Ushiki, N., Fujitani, H., Aoi, Y. & Tsuneda, S. Isolation of Nitrospira belonging to sublineage II from a wastewater treatment plant. Microbes Environ. ME13042 (2013).

  • 51.

    Cotto, I. et al. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Res. 169, 115268 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Koch, H. et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl. Acad. Sci. U.S.A. 112, 11371–11376 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6, 228–234 (2013).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Bristow, L. A. et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc. Natl. Acad. Sci. U.S.A. 113, 10601–10606 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).

    CAS  Article  Google Scholar 

  • 59.

    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England) 25, 1189–1191 (2009).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    Scientists as engaged citizens