in

Recent genetic connectivity and clinal variation in chimpanzees

  • 1.

    Serre, D. & Paabo, S. Evidence for gradients of human genetic diversity within and among continents. Genome Res. 14, 1679–1685 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Ohta, T. Population size and rate of evolution. J. Mol. Evol. 1, 305–314 (1972).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Slatkin, M. Gene flow and selection in a cline. Genetics 75, 733–756 (1973).

  • 4.

    Potts, R. Variability selection in hominid evolution. Evol. Anthropol. 7, 81–96 (1998).

    Article  Google Scholar 

  • 5.

    Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).

    Article  Google Scholar 

  • 6.

    Prüfer, K. et al. The bonobo genome compared with the chimpanzee and human genomes. Nature 486, 527–531 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Hill, W. C. O. in The Nomenclature, Taxonomy and Distribution of Chimpanzees, Vol. 1 (ed. Bourne, G. H.) 22–49 (Karger, 1969).

  • 8.

    Pruetz, J. D. & Bertolani, P. Chimpanzee (Pan troglodytes verus) behavioral responses to stresses associated with living in a savannah-mosaic environment: implications for hominin adaptations to open habitats. Paleoanthropology 2009, 252–262 (2009).

    Article  Google Scholar 

  • 9.

    Fünfstück, T. et al. The sampling scheme matters: Pan troglodytes troglodytes and P. t. schweinfurthii are characterized by clinal genetic variation rather than a strong subspecies break. Am. J. Phys. Anthropol. 156, 181–191 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Fischer, A., Pollack, J., Thalmann, O., Nickel, B. & Paabo, S. Demographic history and genetic differentiation in apes. Curr. Biol. 16, 1133–1138 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Gonder, M. K. et al. A new west African chimpanzee subspecies? Nature 388, 337 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Becquet, C., Patterson, N., Stone, A. C., Przeworski, M. & Reich, D. E. Genetic structure of chimpanzee populations. PLoS Genet. 3, e66 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Bowden, R. et al. Genomic tools for evolution and conservation in the chimpanzee: Pan troglodytes ellioti is a genetically distinct population. PLoS Genet. 8, e1002504 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471–475 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    de Manuel, M. et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science 354, 477–481 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Langergraber, K. E. et al. Genetic and ‘cultural’ similarity in wild chimpanzees. Proc. R. Soc. B. 278, 408–416 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl Acad. Sci. USA 115, 3261–3266 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Vicente, M. & Schlebusch, C. M. African population history: an ancient DNA perspective. Curr. Opin. Genet. Dev. 62, 8–15 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    IUCN Red List. IUCN red list of threatened species. http://www.iucnredlist.org (2020).

  • 20.

    Wentworth, C. K. Natural bridges and glaciation. Am. J. Sci. 26, 577–584 (1933).

    Article  Google Scholar 

  • 21.

    Maley, J. The African rainforest: main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proc. R. Soc. Edinb. 104B, 31–73 (1996).

    Google Scholar 

  • 22.

    Langergraber, K. E. et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Shea, B. T. & Coolidge, H. J. Craniometric differentiation and systematics in the genus Pan. J. Hum. Evol. 13, 671–685 (1988).

    Article  Google Scholar 

  • 24.

    Albrecht, G. H. & Miller, J. M. A. in Geographic Variation in Primates (eds Kimbel, W. H. & Martin, L. B.) 123–161 (Springer Science & Business Media, 2013).

  • 25.

    Shea, B. T., Leigh, S. R. & Groves, C. P. in Multivariate Craniometric Variation in Chimpanzees (eds Kimbel, W. H. & Martin, L. B.) 265–296 (Springer Science & Business Media, 2013).

  • 26.

    Kühl, H. S. et al. Chimpanzee accumulative stonethrowing. Sci. Rep. 6, 22219 (2016).

  • 27.

    Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Pritchard, J. K., Wen, X. & Falush, D. Documentation for structure version 2.3 software: version 2.3. 1–39. http://pritchardlab.stanford.edu/structure_software/release_versions/v2.3.4/structure_doc.pdf (2009).

  • 30.

    Meirmans, P. G. The trouble with isolation by distance. Mol. Ecol. 21, 2839–2846 (2012).

    PubMed  Article  Google Scholar 

  • 31.

    Perez, M. F. et al. Assessing population structure in the face of isolation by distance: are we neglecting the problem? Divers. Distrib. 24, 1883–1889 (2018).

    Article  Google Scholar 

  • 32.

    Thalib, L., Kitching, R. L. & Bhatti, M. I. Principal component analysis for grouped data – a case study. Environmetrics 10, 565–574 (1999).

    Article  Google Scholar 

  • 33.

    Fischer, A. et al. Bonobos fall within the genomic variation of chimpanzees. PLoS ONE 6, e21605 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Frantz, A. C., Cellina, S., Krier, A., Schley, L. & Burke, T. Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J. Appl. Ecol. 46, 493–505 (2009).

    Article  Google Scholar 

  • 35.

    Kalinowski, S. T. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106, 625–632 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Schwartz, M. K. & McKelvey, K. S. Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv. Genet. 10, 441–452 (2008).

    Article  Google Scholar 

  • 37.

    Meirmans, P. G. Seven common mistakes in population genetics and how to avoid them. Mol. Ecol. 24, 3223–3231 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Arandjelovic M, et al. Pan African Programme—The cultured chimpanzee. Guidelines for research and data collection. http://panafrican.eva.mpg.de/english/approaches_and_methods.php (2014).

  • 39.

    Arandjelovic, M. & Vigilant, L. Non-invasive genetic censusing and monitoring of primate populations. Am. J. Primatol. 80, e22743 (2018).

    PubMed  Article  Google Scholar 

  • 40.

    Arthofer, W., Heussler, C., Krapf, P., Schlick-Steiner, B. C. & Steiner, F. M. Identifying the minimum number of microsatellite loci needed to assess population genetic structure: a case study in fly culturing. Fly 12, 13–22 (2018).

  • 41.

    Wenburg, J. K., Bentzen, P. & Foote, C. J. Microsatellite analysis of genetic population structure in an endangered salmonid: the coastal cutthroat trout (Oncorhyncus clarki clarki). Mol. Ecol. 7, 733–749 (1998).

    CAS  Article  Google Scholar 

  • 42.

    Guo, X.-Z. et al. Phylogeography and populationgenetics of Schizothorax o’connori: strong subdivision in the Yarlung Tsangpo River inferred from mtDNA and microsatellite markers. Sci. Rep. 6, 29821 (2016).

  • 43.

    Kleinhans, C. & Willows-Munro, S. Low genetic diversity andshallow population structure inthe endangered vulture, Gyps copotheres. Sci. Rep. 9, 5536 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Bonato, L. et al. Diversity among peripheral populations: genetic and evolutionary differentiation of Salamandra atraat the southern edge of the Alps. J. Zool. Syst. Evol. Res. 56, 533–548 (2018).

    Article  Google Scholar 

  • 45.

    Balkenhol, N. et al. A multi-method approach for analyzing hierarchical genetic structures: a case study with cougars Puma concolor. Ecography 37, 552–563 (2014).

    Article  Google Scholar 

  • 46.

    Kobayashi, T. & Sota, T. Contrasting effects of habitat discontinuity on three closely related fungivorous beetle species with diverging host‐use patterns and dispersal ability. Ecol. Evol. 9, 2475–2486 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).

  • 48.

    Valdes, A. M., Slatkin, M. & Freimer, N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133, 737–749 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Goldstein, D. B., Ruiz Linares, A., Cavalli-Sforza, L. L. & Feldman, M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics 139, 463–471 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Calabrese, P. P., Durrett, R. T. & Aquadro, C. F. Dynamics of microsatellite divergence under stepwise mutation and proportional slippage/point mutation models. Genetics 159, 839–852 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Rich, A. M., Wasserman, M. D., Hunt, K. D. & Kaestle, F. A. Chimpanzee (Pan troglodytes schweinfurthii) population spans multiple protected areas in the Albertine Rift. Folia. Primatol. 91, 595–609 (2020).

  • 53.

    Baldwin, P. J., McGrew, W. C. & Tutin, C. E. G. Wide-ranging chimpanzees at Mt. Assirik, Senegal. Int. J. Primatol. 3, 367–385 (1982).

    Article  Google Scholar 

  • 54.

    Lemoine, S. et al. Group dominance increases territory size and reduces neighbour pressure in wild chimpanzees. R. Soc. Open Sci. 7, 200577 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Newton-Fisher, N. E. The home range of the Sonso community of chimpanzees from the Budongo Forest, Uganda. Afr. J. Ecol. 41, 150–156 (2003).

    Article  Google Scholar 

  • 56.

    Allendorf, F. W. Genetic drift and the loss of alleles versus heterozygosity. Zoo. Biol. 5, 181–190 (1986).

    Article  Google Scholar 

  • 57.

    Barratt, C. D., et al. Late Quaternary habitat suitability models for chimpanzees (Pan troglodytes) since the Last Interglacial (120,000 BP). Preprint at BioRxiv https://www.biorxiv.org/content/10.1101/2020.05.15.066662v1 (2019).

  • 58.

    Bertola, L. D. et al. Phylogeographic patterns in Africa and high resolution delineation of genetic clades in the lion (Panthera leo). Sci. Rep. 6, 30807 (2016).

  • 59.

    Marchesi, P., Marchesi, N., Fruth, B. & Boesch, C. Census and distribution of chimpanzees in Côte D’Ivoire. Primates 36, 591–607 (1995).

    Article  Google Scholar 

  • 60.

    Sommer, V., Adanu, J., Faucher, I. & Fowler, A. Nigerian chimpanzees (Pan troglodytes vellerosus) at Gashaka: two years of habituation efforts. Folia Primatol. 75, 295–316 (2004).

    Article  Google Scholar 

  • 61.

    Chancellor, R. L., Langergraber, K. E., Ramirez, S., Rundus, A. S. & Vigilant, L. Genetic sampling of unhabituated chimpanzees (Pan troglodytes schweinfurthii) in Gishwati Forest Reserve, an isolated forest fragment in western Rwanda. Int. J. Primatol. 33, 479–488 (2012).

    Article  Google Scholar 

  • 62.

    Piel, A. K. et al. Population status of chimpanzees in the Masito-Ugalla Ecosystem, Tanzania. Am. J. Primatol. 77, 1027–1035 (2015).

    PubMed  Article  Google Scholar 

  • 63.

    Wessling, E. G. et al. Seasonal variation in physiology challenges the notion of chimpanzees as a forest-adapted species. Front. Ecol. Evol. 6, 1–21 (2018).

    Article  Google Scholar 

  • 64.

    Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 66.

    Luncz, L. V., Mundry, R. & Boesch, C. Evidence for cultural differences between neighboring chimpanzee communities. Curr. Biol. 22, 922–926 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Boesch, C., Marchesi, P., Marchesi, N., Fruth, B. & Joulian, F. Is nut cracking in wild chimpanzees a cultural behaviour? J. Hum. Evol. 26, 325–338 (1994).

    Article  Google Scholar 

  • 68.

    Kalan, A. K. et al. Environmental variability supports chimpanzee behavioural diversity. Nat. Commun. 11, 4451 (2020).

  • 69.

    Hockings, K. J. in Chimpanzees of Bossou and Nimba, 221–219 (Springer Science & Business Media, 2011).

  • 70.

    McCarthy, M. S., Lester, J. D. & Stanford, C. B. Chimpanzees (Pan troglodytes) flexibly use introduced species for nesting and bark feeding in a human-dominated habitat. Int. J. Primatol. 38, 321–337 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    McLennan, M. R. et al. Surviving at the extreme: chimpanzee ranging is not restricted in a deforested human‐dominated landscape in Uganda. Afr. J. Ecol. 8, e57872 (2020).

    Google Scholar 

  • 72.

    Junker, J. et al. Recent decline in suitable environmental conditions for African great apes. Divers. Distrib. 18, 1077–1091 (2012).

    Article  Google Scholar 

  • 73.

    Kühl, H. S. et al. The Critically Endangered western chimpanzee declines by 80%. Am. J. Primatol. 79, e22681 (2017).

    Article  Google Scholar 

  • 74.

    Walsh, P. D., Breuer, T., Sanz, C., Morgan, D. B. & Doran-Sheehy, D. M. Potential for Ebola transmission between gorilla and chimpanzee social groups. Am. Nat. 169, 684–689 (2007).

    PubMed  Article  Google Scholar 

  • 75.

    Baden, A. L. et al. Anthropogenic pressures drive population genetic structuring across a critically endangered lemur species range. Sci. Rep. 9, 16276 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 76.

    Nsubuga, A. M. et al. Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Mol. Ecol. 13, 2089–2094 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 77.

    Arandjelovic, M. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour. 9, 28–36 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 78.

    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).

    PubMed  Article  Google Scholar 

  • 79.

    Waits, L. P., Luikart, G. & Taberlet, P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10, 249–256 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 80.

    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Mondol, S. et al. New evidence for hybrid zones of forest and savanna elephants in Central and West Africa. Mol. Ecol. 24, 6134–6147 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    How to reduce the environmental impact of your next virtual meeting

    Startup empowers women to improve access to safe drinking water