In this study we were able to obtain estimates of parameters that had been missing for the southwest subpopulation, including survival probabilities of younger stages of manatees, recovery rates of manatee carcasses, and abundance in years before and between abundance surveys.
Survival probabilities of younger animals are key parameters in population viability analyses of Florida manatees11,23,25. But these probabilities have long been extrapolated from one study of manatees in a small management unit on Florida’s east coast26. The average probabilities of juvenile survival estimated here are lower than those obtained from that extrapolation (Fig. 8). Independent estimates of the younger manatee survival probabilities for the southwest management unit will soon be available from genetic mark–recapture–recovery modeling, but such data are not forthcoming for the other three Florida manatee management units, making the approach used here for estimating these probabilities more readily applicable.
In addition, our model provided estimates of the effects of red tide and cold events on the population. The red tide event of 2013, during which 353 carcasses were recovered in the southwest (of which at least 268 were killed by red tide), contributed to an estimated net drop in the population of 331 (217–459) manatees (Fig. 5) for an annual population growth rate of 0.89 (0.85–0.93; Fig. 4). Our results support the finding that such red tide events (classified as intense) affect calves particularly (Supplementary Fig. S13, online)11. In contrast, the cold event of 2010, which led to 247 recovered carcasses in the southwest region, did not appear to lead to a net drop in population, according to our model. This may be in part because our prior estimate of adult survival that year was relatively high (Fig. 7), and the model assumes (and estimates) a fixed ratio between age-class survival rates across years (Supplementary Table S1, online). These new estimates can be helpful in communicating the impact these disturbance events had on the population. Unusual mortality events that lead to high carcass counts often attract a lot of attention from the press and the public. The IPM provides a way to put such mortality events in perspective and to answer questions such as “What was the impact of a particular mortality event on the population?” In addition, the average population growth rate (1.02, 1.01–1.03) estimated from our data supports the hypothesis that the manatee population was increasing from 1997 to 2016 (Figs. 3 and 4). This is the first rigorous estimate of historical (realized) population growth rate for this population. This information is complementary to and consistent with the projected population growth rate obtained from the CBM projections11.
Our model also provided more precise estimates of many parameters estimated earlier, such as adult survival and abundance for years in which abundance surveys were carried out (Figs. 3 and 7). In some cases, our approach may reduce bias, although it is also possible for IPMs to introduce or increase bias27. Possible biases in some input estimates to our model, such as abundance28,29 and end-of-time-series survival probabilities30, have been noted28,29,30. In some cases, the median estimates obtained from the IPM were substantially different from the original estimates (compare prior abundance survey and posterior estimates in Figs. 3 and 7). The IPM might correct for biases in abundance and end-of-time-series survival estimates, although this idea needs to be further evaluated. Because it includes a recovery model for carcass data, the IPM does not hindcast impossible numbers of deaths, unlike the simulation-based hindcast model (Supplementary Fig. S3, online). The IPM results suggest that these results from the simulation-based hindcast model were off both because the 2011 abundance estimate input was too low and because the survival estimate inputs for juveniles (s1–s4) were too high. By integrating multiple sources of information, we are synthesizing the best available information but also hedging our bets by not relying on just one source of data in estimating critical demographic parameters.
Many of our posterior estimates are consistent with other published results for Florida manatees. Our estimates of realized population growth rates (Fig. 4) are similar to the projected population growth estimates from the CBM and consistent with general trends of growth in synoptic and carcass counts. Our estimates of age structure (Fig. 6), although variable over time, are consistent with the asymptotic stable age structure that projecting from a simple matrix model would provide. Our estimates of the mortality effects of the 2013 red tide (Supplementary Fig. S13, online) are similar to those from the CBM. The pattern of our estimated recovery probabilities by coarse stage (Supplementary Fig. S5, online) is consistent with an earlier estimate of age-specific recovery rates relative to (unknown) adult recovery probability31, although our estimates of subadult and adult recovery probabilities are closer to 1 than we expected. The high estimates of recovery probability may be due to the IPM attempting to harmonize partially incompatible model components (Supplementary Fig. S3, online). When model components generate incompatible results, either due to model misspecification or not referencing exactly the same populations, an IPM must reconcile those results. This reconciliation can generate bias in some estimates, although the generally higher precision of IPM estimates may still mean higher accuracy. Ground truthing or other research may be needed to determine whether FWC is actually recovering such a high proportion of manatee carcasses.
The results of this study are relevant to the management of Florida manatee populations. The manatee recovery plan used by the USFWS under the Endangered Species Act relies on several metrics that can be obtained from the IPM, such as realized population growth rates and population size. The IPM provides one of the most rigorous assessments to date for these quantities and may be used by natural resource managers in assessing the status of the manatee population. It can also be used to update key model parameters of the CBM, which at present is the primary population assessment tool for managers.
Another important regulatory framework relevant to marine mammal conservation in the United States is the Marine Mammal Protection Act. Here again, an IPM can help in addressing some of the act’s requirements. Indeed, the act specifies a formula for computing potential biological removal (PBR; the maximum number of animals that can be removed from a stock while allowing it to reach or remain at its optimum sustainable population)32,33,34,35
$$begin{aligned} PBR & = N_{min} frac{{R_{max} }}{2}F_{r} N_{min} & = frac{{hat{N}}}{{exp left( {0.842sqrt {log left( {1 + {text{CV}} left( {hat{N}} right)^{2} } right)} } right)}} end{aligned}$$
(1)
where Nmin is the minimum population abundance estimate (20th percentile of abundance estimate distribution), Rmax is the theoretical maximum rate of increase for the stock, Fr is a recovery factor (generally 0.5 for threatened species, but see Moore et al.35), and (hat{N}) is the point estimate of population abundance. Based on our estimate from the last year of the analysis (2016), Nmin for the southwest population of Florida manatees is about 2780. This is lower than Nmin would be based on the abundance survey (prior) estimate from the same year (about 3140); (CVleft(hat{N}right)) from the IPM posterior was lower than from the prior (Supplementary Fig. S2, online) but (hat{N}) was as well (Fig. 3). Estimation of Rmax requires extrapolating growth rates to conditions of low population density and absence of anthropogenic mortality; our IPM is not designed for that purpose, but future extensions could be developed to address this need. A merging of our IPM, or other matrix model approach, with an allometric approach to estimating Rmax would allow a more accurate estimate of this parameter36. Both matrix model (individual population) and allometric (cross population) approaches to estimating Rmax are strongly affected by biases caused by using empirical estimates of adult survival instead of what adult survival would be under ideal conditions; however, these biases run in opposite directions, so an integration of these approaches greatly reduces any bias in Rmax36.
Another benefit of the IPM is its usefulness for planning monitoring activities, including how to allocate resources to various aspects of the monitoring program, such as aerial surveys, photo-identification, genetic sampling, and carcass recovery. Various sampling scenarios (e.g., 40% of carcasses recovered; 200 genetic samples per year; one aerial survey every 5 years) can be combined with simulated data generated under those scenarios to see how the accuracy of model parameter estimates differs among scenarios. Trade-offs between parameter accuracy/precision and budget allocation can then be examined to improve monitoring efficiency. Optimizing the sampling with an IPM also makes sense in the context of targeted monitoring for adaptive management37. In such applications, the IPM can be used to estimate state variables (e.g., abundance) that keep track of system changes, allow managers to implement state-dependent decisions, and update beliefs about which model is the best approximation of reality (through Bayes theorem)37,38. A now classic example of an implementation of this adaptive management process is for the sustainable harvesting of waterfowl in North America37, where the optimal state-dependent harvest policies are driven, at least partially, by waterfowl abundance. IPMs are now being used to increase precision of abundance and other state variables in adaptive management of waterfowl39,40.
A monitoring component that could be streamlined is the carcass-recovery and necropsy program. The present protocol is that almost all carcasses reported must be recovered and necropsied, which, along with the growth in the manatee population, is making this program increasingly labor-intensive and expensive. The IPM gives us the first true estimates of carcass recovery probabilities for Florida manatees. These estimates are now being used by FWC in evaluating and improving the efficiency of these programs.
Monitoring populations of marine mammals involves special challenges, such as the difficulty, cost, and risk to researchers involved in counting the population, often through aerial surveys. Several other studies that involved the development of IPM for marine mammals16,41,42,43 had at least one thing in common with ours: population surveys were not conducted every year, which differs from most IPMs used for terrestrial birds and mammals. Our approach, like those applied to other marine mammals, could be valuable for filling in abundance estimates for other sirenians and small cetaceans, where estimating survival and reproductive probabilities from mark–recapture data is often easier than obtaining abundance estimates. As explained earlier, the IPM can then be used to determine the optimal frequency of surveys and optimal spatial sampling effort (e.g., how much area to survey and how many survey visits at each location to estimate detection)28.
Studies of other marine mammals16,41,42,43 collected explicit data on age or stage structure, while for manatees, reliable data were not available for these parameters. We were able to estimate age class structure for the years 2002–2016 using neither stage structure data nor particularly informed priors (Fig. 6). This is likely because of the weak ergodic theorem of demography, which shows that the initial stage structure becomes less relevant with more years of known (or, in our case, estimated) survival and reproductive probabilities3,44. Our approach may be useful for other marine species without reliable stage structure information. Modeling stage structure and transient dynamics can be important to improving understanding of the dynamics of wild populations and can have important management implications. For instance, Johnson et al.45 found that the initial stage structure could have substantial policy consequences for the management of an invasive species.
Our IPM and the associated input models are based on a series of assumptions (Supplementary Table S1, online). One of the assumptions of the IPM is the independence of the data sources for the input analyses. This assumption is violated in our case; the adult survival analysis shares carcass data with the recovery analysis and mark–recapture data with the reproductive analysis. Two simulation studies17,46 found that violating this assumption had little effect, but as their analyses were not identical to ours, this assumption violation still might diminish the accuracy of our estimates. Simulations by Rieke et al.47 show that assumption violations in one of the model components can dramatically reduce the accuracy of estimates of latent parameters. Therefore, in our case, the estimates of juvenile survival, recovery probabilities, and abundance in years without abundance surveys should all be interpreted cautiously.
There are several possible extensions of this model, for example for use in the other three Florida manatee management units (Fig. 1). Because we are uncertain about winter within-coast manatee distribution29, two coast-wide IPMs that each jointly model the two management units on that coast might be most appropriate. With an initial abundance distribution and yearly vital rate estimates for each management unit (possibly including movement rates between regions, if they become available), subsequent coast-wide abundance estimates could be shared between them. This would allow relaxation of the assumption that the proportion of the winter population in each of the two management units remains fixed over time.
Possible extensions could demonstrate whether and to what extent the IPM decreases bias in input estimates, through simulating estimates with known biases and carcass data, running the IPM with the simulated data, and repeating this process many times. One could similarly test the model’s robustness to different assumption violations.
Preliminary analyses suggest that our use of earlier analyses as priors in the integrated model does not bias results but that it might reduce precision. Therefore, it may be useful to estimate more parameters from data directly within a future version of this IPM. In addition, incorporating additional data sources (such as genetic mark–recapture and age estimates using tympanoperiotic ear bones) could improve parameter estimation. Since each parameter can have only one prior, this too requires performing more of the data analysis within the IPM.
Despite these limitations, we believe that this manatee IPM is the most rigorous means of retrospective assessment of the population dynamics of the Florida manatee. Because the model is modular (e.g., abundance module, survival module), as each module is improved, the model as a whole is improved. This offers a compelling framework within which to synthesize and update information about population dynamics. We have shown here that an IPM can be used: (1) to infer historical trends in abundance, improving our understanding of population dynamics and therefore our ability to forecast; (2) to model the transient dynamics of stage distribution, which can be important to some populations; (3) to assess the conservation status of wild populations and to communicate that information to stakeholders (e.g., we can now quantify the impact of the 2013 red tide event on the manatee population); and (4) to improve allocation of effort in complex monitoring programs.
Our modeling frameworks are relevant to population status assessment protocols for management and conservation, such as recovery plans under the Endangered Species Act and potential biological removal under the Marine Mammal Protection Act. Other marine mammal conservation programs, such as that of the Hawaiian monk seal, also have complex monitoring components48. We hope that our ideas can inform other programs that focus on the conservation of marine mammals.
Source: Ecology - nature.com