in

Red Panda feces from Eastern Himalaya as a modern analogue for palaeodietary and palaeoecological analyses

  • 1.

    Pradhan, S., Saha, G. K. & Khan, J. A. Food habits of the red panda, Ailurus fulgens, in the Singalila National Park, Darjeeling, India. J. Bombay Nat. Hist. Soc. 98, 224–230 (2001).

    Google Scholar 

  • 2.

    Bista, D. et al. Distribution and habitat use of red panda in the Chitwan–Annapurna Landscape of Nepal. PLoS ONE 12, e0178797 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Martin, P. S. The discovery of America. Science 179, 969–974 (1973).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Miller, G. H. et al. Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna. Science 283, 205–208 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Grayson, D. K. & Meltzer, D. J. A requiem for North America overkill. J. Archaeol. Sci. 30, 585–593 (2003).

    Article 

    Google Scholar 

  • 6.

    van der Kaars, S. et al. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat. Commun. https://doi.org/10.1038/ncomms14142 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Louys, J. & Roberts, P. Environmental drivers of megafaunal and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Ripple, W. J. et al. Tertiary fossil fungi from Kiandra, New South Wales. Proc. Linn. Soc. NSW. 97, 141–149 (1975).

    Google Scholar 

  • 9.

    Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Brook, S. M. et al. Lessons learned from the loss of a flagship: the extinction of the Javan rhinoceros Rhinoceros sondaicus annamiticus from Vietnam. Biol. Conserv. 174, 21–29 (2014).

    Article 

    Google Scholar 

  • 11.

    Prasad, V., Stromberg, C. A. E., Alimohammadian, H. & Sahni, A. Dinosaur coprolites and the early evolution of grasses and grazers. Science 310, 1177–1180 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Shillito, L. M., Blong, J. C., Green, E. J. & VanAsperen, E. N. The what, how and why of archaeological human coprolite analysis. Earth Sci. Rev. 207, 103196 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    van Geel, B. et al. The ecological implications of a Yakutian mammoth’s last meal. Quat. Res. 69, 361–376 (2008).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Rawlence, N. J., Wood, J. R., Bocherens, H. & Rogers, K. M. Dietary interpretations for extinct megafauna using coprolites, intestinal contents and stable isotopes: Complimentary or contradictory?. Quat. Sci. Rev. 142, 173–178 (2016).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Carrion, J. S. Pleistocene landscape in central Iberia inferred from pollen analysis of hyena coprolite. J. Quat. Sci. 22(2), 191–202 (2007).

    Article 

    Google Scholar 

  • 16.

    Wood, J. R. et al. Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quat. Sci. Rev. 27, 2593–2602 (2008).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Gravendeel, B. et al. Multiproxy study of the last meal of a mid-Holocene Oyogos Yar horse, Sakha Republic, Russia. The Holocene 24(10), 1288–1296 (2014).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Akeret, O., Haas, J. N., Leuzinger, U. & Jacomet, S. Plant macrofossils and pollen in goat/sheep faeces from the Neolithic lake-shore settlement Arbon Bleiche 3, Switzerland. The Holocene 9(2), 175–182 (1999).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Birks, H. H. et al. Evidence for the diet and habitat of two late Pleistocene mastodons from the Midwest, USA. Quat. Res. 79, 1–21 (2018).

    ADS 

    Google Scholar 

  • 20.

    van der Waal, C. et al. Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165, 1095–1107 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Velazquez, N. J. & Burry, L. S. Palynological analysis of Lama guanicoe modern feces and its importance for the study of coprolites from Patagonia, Argentina. Rev. Palaeob. Palynol. 184, 14–23 (2012).

    Article 

    Google Scholar 

  • 22.

    Basumatary, S. K., McDonald, H. G. & Gogoi, R. Pollen and non-pollen palynomorph preservation in the dung of the Greater one –horned rhino (Rhinoceros unicornis), and its implication to palaeoecology and palaeodietary analysis: a case study from India. Rev. Palaeo. Palynol. 244, 153–162 (2017).

    Article 

    Google Scholar 

  • 23.

    Basumatary, S. K., Singh, H., McDonald, H. G., Tripathi, S. & Pokharia, A. K. Modern botanical analogue of endangered Yak (Bos mutus) dung from India: Plausible linkage with living and extinct megaherbivores. PLoS ONE 14(3), e0202723 (2019).

  • 24.

    Roberts, M. S. & Gittleman, J. L. Ailurus fulgens. Mammalian species. Am. Soc. Mammal. 222, 1–8 (1984).

    Google Scholar 

  • 25.

    Johnson, K. G., Schaller, G. B. & Hu, J. C. Comparative behavior of red and giant pandas in the Wolong Reserve, China. J. Mammal. 69, 552–564 (1988).

    Article 

    Google Scholar 

  • 26.

    Yonzon, P. B. & Hunter, M. L. Ecological study of the red panda in Nepal-Himalaya. red panda Biology 1, 7 (1989).

    Google Scholar 

  • 27.

    Wei, F. W., Wang, W., Zhou, A., Hu, J. & Wei, Y. Preliminary study on food selection and feeding strategy of red pandas. Acta Theriol. Sin. 15, 259–266 (1995).

    Google Scholar 

  • 28.

    Zhang, Z. J., Hu, J. C., Yang, J. D., Li, M. & Wei, F. W. Food habits and space-use of red panda, Ailurus fulgens in the Fengtongzhai Nature Reserve, China: Food effects and behavioural response. Acta Theriol. 54, 225–234 (2009).

    Article 

    Google Scholar 

  • 29.

    Dorji, S., Vernes, K. & Rajaratnam, R. Habitat correlates of the red panda in the temperate forests of Bhutan. PLoS ONE 6, e26483 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Panthi, S., Aryal, A., Raubenheimer, D., Lord, J. & Adhikari, B. Summer diet and distribution of the Red Panda (Ailurus fulgens fulgens) in Dhorpatan Hunting Reserve, Nepal. Zool. Stud. 51(5), 701–709 (2012).

    Google Scholar 

  • 31.

    Sharma, H. P., Swenson, J. E. & Belant, J. L. Seasonal food habits of the red panda (Ailurus fulgens) in Rara National Park, Nepal. Hystrix 25(1), 47–50 (2014).

    Google Scholar 

  • 32.

    Panthi, S., Coogan, S. C. P., Aryal, A. & Raubenheimer, D. Diet and nutrient balance of red panda in Nepal. Sci. Nat. 102, 54 (2015).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Thapa, A. & Basnet, K. Seasonal diet of wild red panda (Ailurus fulgens) in Langtang national park, Nepal Himalaya. Inter. J. Conser. Sci. 6(2), 261–270 (2015).

    CAS 

    Google Scholar 

  • 34.

    Thapa, A. et al. The endangered red panda in Himalayas: potential distribution and ecological habitat associates. Glob. Ecol. Conser. 21, e00890 (2020).

  • 35.

    Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, eaax5751 (2020).

  • 36.

    IUCN. IUCN red list of threatened species. Version 2018.1. [Online] Available: www.iucnredlist.org (August 14, 2018).

  • 37.

    Salesa, M. J., Peigne, S., Antón, M. & Morales, J. Evolution of the Family Ailuridae: Origins and Old- World Fossil Record. In Red Panda: Biology and Conservation of the First Panda (ed. Glatston, A. R.) 27–41 (Elsevier, 2011).

    Chapter 

    Google Scholar 

  • 38.

    Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Chaudhury, A. An overview of the status and conservation of the red panda (Ailurus fulgens) in India, with reference to its global status. Oryx 35(3), 250–259 (2001).

    Article 

    Google Scholar 

  • 40.

    Eizirik, E. et al. Pattern and timing of diversification of the mammalian order carnivora inferred from multiple nuclear gene sequences. Mol. Phylogenet. Evol. 56(1), 49–63 (2015).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Hu, Y. et al. Comparative genomics reveals convergent evolution between bamboo-eating giant and red pandas. Proc. Natl. Acad. Sci. 114(5), 1081–1086 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Jha, A. K. Release and reintroduction of captive-bred red pandas into Singalila National Park, Darjeeling, India. In Red panda: biology and conservation of the first panda (ed. Glatson, A. R.) 435–446 (Academic Press, 2011).

    Chapter 

    Google Scholar 

  • 43.

    Wikramanayake, E., E. Terrestrial Ecoregions of the Indo-Pacific: A Conservation Assessment. Washington, D.C.: Island Press. ISBN 1-55963-923-7 (2002).

  • 44.

    Janzen, D. H. Why bamboos wait so long to flower. Ann. Rev. Eco. Syst. 7, 347–391 (1976).

    Article 

    Google Scholar 

  • 45.

    van Geel, B. et al. Giant deer (Megaloceros giganteus) diet from Mid-Weichselian deposits under the present North Sea inferred from molar-embedded botanical remains. J. Quat. Sci. 33, 924–933 (2018).

    Article 

    Google Scholar 

  • 46.

    Basumatary, S. K. & McDonald, H. G. Coprophilous fungi from dung of the greater one-horned Rhino in Kaziranga National Park, India and its implication to palaeoherbivory and palaeoecology. Quat. Res. 88, 14–22 (2017).

    Article 

    Google Scholar 

  • 47.

    Swati, T. et al. Multiproxy studies on dung of endangered sangai (Rucervus eldii eldii) and Hog deer (Axis porcinus) from Manipur, India: Implication for paleoherbivory and paleoecology. Rev. Palaeob. Palyn. 263, 85–103 (2019).

    Article 

    Google Scholar 

  • 48.

    Goh, T. K., Ho, W. H., Hyde, K. D., Whitton, S. R. & Umali, T. E. New records and species of Canalisporium (Hyphomycetes), with a revision of the genus. Canadian J. Bot. 76, 142–152 (1998).

    Google Scholar 

  • 49.

    Heudre, D., Wetzel, C. E., Moreau, L. & Ector, L. Sellaphora davoutiana sp. Nov.: a new freshwater diatom species (Sellaphoraceae, Bacillariophyta) in lakes of Northeastern France. Phytotaxa 346(3), 269–279 (2018).

    Article 

    Google Scholar 

  • 50.

    Biswas, O. et al. Can grass phytoliths and indices be relied on during vegetation and climate interpretations in the eastern Himalayas? Studies from Darjeeling and Arunachal Pradesh, India. Quat. Sci. Rev. 134, 114–132 (2016).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Biswas, O. et al. A comprehensive calibrated phytolith based climatic index from the Himalaya and its application in palaeotemperature reconstruction. Sci. Total Environ. 750, 142 (2021).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Chaudhuri, A. B. Common grasses and sedges of Kurseong, Kalimpong and Darjeeling forest divisions, West Bengal. Indian For. 86(6), 336–348 (1960).

    Google Scholar 

  • 53.

    Hajra, P. K. & Verma, D. M. Flora of Sikkim, Vol. II. Botanical Survey of India, (1996).

  • 54.

    Neto, M. A. M. & Guerra, M. P. A new method for determination of the photosynthetic pathway in grasses. Photosyn. Res. 142, 51–56 (2019).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Frank, K., Bruckner, A., Hilpert, A., Heethoft, M. & Bluthgen, N. Nutrient quality of vertebrate dung as a diet for dung beetles. Sci. Rep. 17, 12141 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and palaeoecology. J. Archaeol. Sci. 78, 227–248 (1991).

    Article 

    Google Scholar 

  • 57.

    Heaton, T. Spatial, species, and yemporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. J. Archaeol. Sci. 26, 637–649 (1999).

    Article 

    Google Scholar 

  • 58.

    Arens, N. C., Jahren, A. H. & Amundson, R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?. Paleobiology 26(1), 137–164 (2000).

    Article 

    Google Scholar 

  • 59.

    Cerling, T. E., Harris, J. M. & Leakey, M. G. Browsing and grazing in modern and fossil proboscideans. Oecologia 120, 364–374 (1999).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Mac Fadden, B. J., Cerling, T. E., Harries, J. M. & Prado, J. L. Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of New World Pleistocene horse (Equus) teeth. Global Ecol. Biog. 8, 137–149 (1999).

    Google Scholar 

  • 61.

    Burney, D. A., Robinson, G. S. & Burney, L. P. Sporormiella and the late Holocene extinctions in Madagascar. Proc. Natl Acad. Sci. U.S.A. 100(19), 10800–10805 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Davis, O. K. & Shafer, D. S. Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeog. Palaeoclim. Palaeo. 237, 40–50 (2006).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Raper, D. & Bush, M. A test of Sporormiella representation as a predictor of megaherbivore presence and abundance. Quat. Res. 71, 490–496 (2009).

    Article 

    Google Scholar 

  • 64.

    Perrotti, A. G. & Van Asperen, E. N. 2019: Dung fungi as a proxy for megaherbivores: opportunities and limitations for archaeological applications. Veget. Hist. Archaeobot. 28, 93–104 (2019).

    Article 

    Google Scholar 

  • 65.

    Ingold, C. T. Ballistics in certain ascomycetes. New Phytol. 60, 143–149 (1961).

    Article 

    Google Scholar 

  • 66.

    Trail, F. Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbio. Letters 276, 12–18 (2007).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Yafetto, L. The fastest flights in nature: high-speed spore discharge mechanisms among fungi. PLoS ONE 3, e3237 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Erdtman, G. An introduction to Pollen Analysis (Waltham, 1953).

    Google Scholar 

  • 69.

    Gupta, H.P. & Sharma, C. Pollen flora of North-west Himalaya. Indian Association of Palynostratigraphers, Lucknow, India, (1986).

  • 70.

    Van Geel, B. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J. Archaeo. Sci. 30, 873–883 (2003).

    Article 

    Google Scholar 

  • 71.

    Van Asperen, E. N., Kirby, J. R. & Hunt, C. O. The effect of preparation methods on dung fungal spores: Implications for recognition of megafaunal populations. Rev. Palaeobot. Palynol. 229, 1–8 (2016).

    Article 

    Google Scholar 

  • 72.

    Neumann, K. International code for phytolith nomenclature ICPN 2.0. Ann. Bot. 124, 189–199 (2019).

    Article 

    Google Scholar 

  • 73.

    Hill, M. O. & Gauch, H. G. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42(1), 47–58 (1980).

    Article 

    Google Scholar 

  • 74.

    Ter Braak, C. J. F. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).

    Article 

    Google Scholar 

  • 75.

    Ter Braak, C. J. F. Canoco-a FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal components analysis and redundancy analysis (version 2.1).Technical Rep. LWA-88-02. GLW, Wageningen, 95 pp. (1988).

  • 76.

    Ter Braak, C. J. F. & Smilauer, P. CANOCO 4.5. Biometris. Wageningen University and Research Center, Wageningen, 500 pp. (2002).

  • 77.

    Agnihotri, R. et al. Radiocarbon measurements using new automated graphite preparation laboratory coupled with stable isotope mass-spectrometry at Birbal Sahni Institute of Palaeosciences, Lucknow (India). J. Environ. Radioact. 213, 106156 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    The use of multi-criteria method in the process of threat assessment to the environment

    3 Questions: Daniel Cohn on the benefits of high-efficiency, flexible-fuel engines for heavy-duty trucking