in

Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics

  • 1.

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. U. S. A. 116, 4382–4387 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 3.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).

    Article 

    Google Scholar 

  • 4.

    Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).

    Article 
    ADS 

    Google Scholar 

  • 5.

    Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 6.

    Lovett, G. M. et al. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecol. Appl. 26, 1437–1455 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci Adv 7, eabe9829 (2021).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 8.

    Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl. Acad. Sci. U. S. A. 115, 2776–2781 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. Biol. Sci. 286, 20192221 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Woodall, C. W., Miles, P. D. & Vissage, J. S. Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. For. Ecol. Manag. 216, 367–377 (2005).

    Article 

    Google Scholar 

  • 12.

    Reineke, L. H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 46, 627–638 (1933).

    Google Scholar 

  • 13.

    Long, J. N. A practical approach to density management. For. Chron. 61, 23–27 (1985).

    Article 

    Google Scholar 

  • 14.

    Domke, G. et al. Forests. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero-Lankao, P. & Zhu, Z.) 365–398 (US Global Change Research Program, 2018).

  • 15.

    Yoda, K., Kira, T., Ogawa, H. & Hozumi, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 106–129 (1963).

    Google Scholar 

  • 16.

    Drew, T. J. & Flewelling, J. W. Stand density management: An alternative approach and its application to Douglas-fir plantations. For. Sci. 25, 518–532 (1979).

    Google Scholar 

  • 17.

    Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program: National Sampling Design and Estimation Procedures. SRS GTR-80. USDA Forest Service, Southern Research Station, Asheville, North Carolina, USA. (2005). https://doi.org/10.2737/SRS-GTR-80.

  • 18.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Andrews, C., Weiskittel, A., D’Amato, A. W. & Simons-Legaard, E. Variation in the maximum stand density index and its linkage to climate in mixed species forests of the North American Acadian Region. For. Ecol. Manag. 417, 90–102 (2018).

    Article 

    Google Scholar 

  • 20.

    Nagel, L. M. et al. Adaptive silviculture for climate change: A national experiment in manager–scientist partnerships to apply an adaptation framework. J. For. 115, 167–178 (2017).

    Google Scholar 

  • 21.

    Pretzsch, H. & Biber, P. A re-evaluation of the Reineke’s rule and stand density index. For. Sci. 51, 304–320 (2005).

    Google Scholar 

  • 22.

    Condés, S. et al. Climate influences on the maximum size-density relationship in Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands. For. Ecol. Manag. 385, 295–307 (2017).

    Article 

    Google Scholar 

  • 23.

    Ducey, M. J., Woodall, C. W. & Bravo-Oviedo, A. Climate and species functional traits influence maximum live tree stocking in the Lake States, USA. For. Ecol. Manag. 386, 51–61 (2017).

    Article 

    Google Scholar 

  • 24.

    Zhao, D., Bullock, B. P., Montes, C. R. & Wang, M. Rethinking maximum stand basal area and maximum SDI from the aspect of stand dynamics. For. Ecol. Manag. 475, 118462 (2020).

    Article 

    Google Scholar 

  • 25.

    Weiskittel, A. R. & Kuehne, C. Evaluating and modeling variation in site-level maximum carrying capacity of mixed-species forest stands in the Acadian Region of northeastern North America. For. Chron. 95, 171–182 (2019).

    Article 

    Google Scholar 

  • 26.

    Pretzsch, H. & del Río, M. Density regulation of mixed and mono-specific forest stands as a continuum: A new concept based on species-specific coefficients for density equivalence and density modification. For. Int. J. For. Res. 93, 1–15 (2020).

    Google Scholar 

  • 27.

    Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 28.

    Woodall, C. W., Perry, C. H. & Miles, P. D. The relative density of forests in the United States. For. Ecol. Manag. 226, 368–372 (2006).

    Article 

    Google Scholar 

  • 29.

    Venturas, M. D., Todd, H. N., Trugman, A. T. & Anderegg, W. R. L. Understanding and predicting forest mortality in the western United States using long-term forest inventory data and modeled hydraulic damage. New Phytol. 230, 1896–1910 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 27, 1–2 (2021).

    Article 
    ADS 

    Google Scholar 

  • 31.

    Peters, M. P. & Iverson, L. R. Projected drought for the conterminous United States in the 21st century. In Effects of Drought on Forests and Rangelands in the United States (eds Vose, J. M., Peterson, D. L., Luce, C. H. & Patel-Weynand, T.) vol. Gen. Tech. Rep. WO-98 19–39 (USDA Forest Service, 2019).

  • 32.

    Coulston, J. W., Woodall, C. W., Domke, G. M. & Walters, B. F. Refined forest land use classification with implications for United States national carbon accounting. Land Use Policy 59, 536–542 (2016).

    Article 

    Google Scholar 

  • 33.

    Wear, D. N. & Coulston, J. W. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep. 5, 16518 (2015).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 34.

    Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).

    Article 

    Google Scholar 

  • 35.

    Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211–1219 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. U. S. A. 114, 11645–11650 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 37.

    Gunn, J. S., Ducey, M. J. & Belair, E. Evaluating degradation in a North American temperate forest. For. Ecol. Manag. 432, 415–426 (2019).

    Article 

    Google Scholar 

  • 38.

    Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2010840117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    King, D. I. & Schlossberg, S. Synthesis of the conservation value of the early-successional stage in forests of eastern North America. For. Ecol. Manag. 324, 186–195 (2014).

    Article 

    Google Scholar 

  • 40.

    Stephens, S. L. et al. Forest restoration and fuels reduction: Convergent or divergent?. Bioscience 71, 85–101 (2020).

    Google Scholar 

  • 41.

    Berner, L. T., Law, B. E., Meddens, A. J. H. & Hicke, J. A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 12, 065005 (2017).

    Article 
    ADS 

    Google Scholar 

  • 42.

    Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 43.

    Weiskittel, A. R., Gould, P. J. & Temesgen, H. Sources of variation in the self-thinning boundary line for three species with varying levels of shade tolerance. For. Sci. 55, 84–93 (2009).

    Google Scholar 

  • 44.

    Ducey, M. J. & Knapp, R. A. A stand density index for complex mixed species forests in the northeastern United States. For. Ecol. Manag. 260, 1613–1622 (2010).

    Article 

    Google Scholar 

  • 45.

    Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. U. S. A. 105, 1551–1555 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 46.

    Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Change Biol. 17, 2842–2852 (2011).

    Article 
    ADS 

    Google Scholar 

  • 47.

    Nelson, M. D. et al. Defining the United States land base: A technical document supporting the USDA Forest Service 2020 RPA assessment. In Gen. Tech. Rep. NRS-191, Vol. 191, 1–70 (2020).

  • 48.

    Patterson, P. L. & Reams, G. A. Combining panels for forest inventory and analysis estimation. Gen. Tech. Rep. SRS-80. Asheville, NC: US Department of Agriculture, Forest Service, 79–84 (2005).

  • 49.

    Bailey, R. G. Delineation of ecosystem regions. Environ. Manag. 7, 365–373 (1983).

    Article 
    ADS 

    Google Scholar 

  • 50.

    Salas-Eljatib, C. & Weiskittel, A. R. Evaluation of modeling strategies for assessing self-thinning behavior and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57(13), 1–29. http://www.jstatsoft.org/v57/i13/ (2013).

    Google Scholar 

  • 52.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    Google Scholar 

  • 53.

    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).

    Article 
    ADS 

    Google Scholar 

  • 55.

    De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 88, 243–251 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    Long, J. N. & Daniel, T. W. Assessment of growing stock in uneven-age stands. West. J. Appl. For. 11, 59–61 (1990).

    Article 

    Google Scholar 

  • 57.

    Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Predicting building emissions across the US

    A new method for removing lead from drinking water