Convention on Biological Diversity (UN, 1992).
Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets (CBD, 2011); http://www.cbd.int/sp/
Transforming Our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (UN, 2015).
Global Biodiversity Outlook 5 (Secretariat of the Convention on Biological Diversity, 2020).
Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES, 2019); https://doi.org/10.5281/zenodo.3831673
Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Lett. https://doi.org/10.1111/conl.12762 (2020).
Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).
Google Scholar
Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).
Google Scholar
Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).
Google Scholar
Piipponen-Doyle, S., Bolam, F. C. & Mair, L. Disparity between ecological and political timeframes for species conservation targets. Biodivers. Conserv. 30, 1899–1912 (2021).
Google Scholar
Keith, D. A. et al. The IUCN Red List of Ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Google Scholar
Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).
Google Scholar
Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
Google Scholar
Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).
Google Scholar
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework First Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021).
Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Google Scholar
Rounsevell, M. D. A. et al. A biodiversity target based on species extinctions. Science 368, 1193–1195 (2020).
Google Scholar
Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).
Google Scholar
Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).
Google Scholar
Hunter, D. et al. Including Food Systems, Biodiversity, Nutrition and Dietary Health in the Zero Draft of the Post-2020 Global Biodiversity Framework (Alliance of Bioversity International and the International Center for Tropical Agriculture and the United Nations Environment Programme, 2020); https://hdl.handle.net/10568/107096
Halewood, M., Ferreira de Souza Dias, B., Nnadozie, K., Noriega, I. & Toledo, A. Including Access and Benefit Sharing in the Post-2020 Global Biodiversity Framework (AfricaRice, Alliance of Bioversity International and CIAT, ICARDA, ICRISAT, IITA, ILRI, CIMMYT, CIP, IRRI, World Agroforestry Centre, The Secretariat of International Treaty on Plant Genetic Resources for Food and Agriculture, UNEP and The ABS Capacity Development Initiative, 2020); https://cgspace.cgiar.org/handle/10568/111273
Delabre, I. et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 7, eabc8259 (2021).
Google Scholar
Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).
Google Scholar
Lyons, M. B. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 6, 557–568 (2020).
Google Scholar
Keith, D. A., Ferrer-Paris, J. R., Nicholson, E. & Kingsford, R. T. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups (IUCN, 2020).
Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93 (2018).
Google Scholar
Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci. Total Environ. 619–620, 249–257 (2018).
Google Scholar
Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).
Google Scholar
Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. (eds.) Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria v. 1.1 (IUCN, 2017).
Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).
Google Scholar
Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 0, e12665 (2019).
Botts, E. A. et al. More than just a (red) list: over a decade of using South Africa’s threatened ecosystems in policy and practice. Biol. Conserv. 246, 108559 (2020).
Google Scholar
Mace, G. M. The ecology of natural capital accounting. Oxford Rev. Econ. Policy 35, 54–67 (2019).
Google Scholar
Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).
Google Scholar
Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).
Google Scholar
Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conserv. Biol. 33, 300–306 (2019).
Google Scholar
Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).
Google Scholar
Campbell, L. M., Hagerman, S. & Gray, N. J. Producing targets for conservation: science and politics at the tenth conference of the parties to the convention on biological diversity. Glob. Environ. Politics 14, 41–63 (2014).
Google Scholar
Rogalla von Bieberstein, K. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).
Google Scholar
Martínez-Jauregui, M., Touza, J., White, P. C. L. & Soliño, M. Choice of biodiversity indicators may affect societal support for conservation programs. Ecol. Indic. 121, 107203 (2021).
Google Scholar
Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).
Google Scholar
Harpole, W. S. & Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 446, 791–793 (2007).
Google Scholar
Shi, J., Ma, K., Wang, J., Zhao, J. & He, K. Vascular plant species richness on wetland remnants is determined by both area and habitat heterogeneity. Biodivers. Conserv. 19, 1279–1295 (2010).
Google Scholar
Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).
Google Scholar
Murray, N. J. et al. The use of range size to assess risks to biodiversity from stochastic threats. Divers. Distrib. 23, 474–483 (2017).
Google Scholar
Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175 (2020).
Google Scholar
Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. https://doi.org/10.1111/gcb.15634 (2021).
Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).
Google Scholar
Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature https://doi.org/10.1038/s41586-019-1567-7 (2019).
Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
Google Scholar
DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).
Google Scholar
Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).
Google Scholar
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
Google Scholar
Wilkins, S., Keith, D. A. & Adam, P. Measuring success: evaluating the restoration of a grassy eucalypt woodland on the Cumberland Plain, Sydney, Australia. Restor. Ecol. 11, 489–503 (2003).
Google Scholar
Noss, R. F. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4, 355–364 (1990).
Google Scholar
Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
Google Scholar
Burgman, M. A., Ferson, S. & Akcakaya, H. R. Risk Assessment in Conservation Biology (Chapman and Hall, 1993).
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
Google Scholar
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Update of the Zero Draft of the Post 2020 Global Biodiversity Framework CBD/POST2020/PREP/2/1 (CBD, 2020).
Cumming, G. S. & Peterson, G. D. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32, 695–713 (2017).
Google Scholar
Burgass, M. J. et al. Three key considerations for biodiversity conservation in multilateral agreements. Conserv. Lett. 14, e12764 (2021).
Google Scholar
Rice, W. S., Sowman, M. R. & Bavinck, M. Using theory of change to improve post-2020 conservation: a proposed framework and recommendations for use. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.301 (2020).
Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).
Google Scholar
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/2/3 (CBD, 2020).
Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0504-8 (2018).
Niemeijer, D. & de Groot, R. S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 8, 14–25 (2008).
Google Scholar
Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26-27, 97–105 (2017).
Google Scholar
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature https://doi.org/10.1038/s41586-020-2705-y (2020).
Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).
Google Scholar
Turner, I. M. & T. Corlett, R. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).
Google Scholar
Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).
Google Scholar
Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).
Google Scholar
Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).
Google Scholar
Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).
Google Scholar
Hein, M. Y., Willis, B. L., Beeden, R. & Birtles, A. The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol. 25, 873–883 (2017).
Google Scholar
Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).
Google Scholar
Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).
Google Scholar
Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).
Google Scholar
Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).
Google Scholar
Etter, A., Andrade, A., Nelson, C. R., Cortés, J. & Saavedra, K. Assessing restoration priorities for high-risk ecosystems: an application of the IUCN Red List of Ecosystems. Land Use Policy 99, 104874 (2020).
Google Scholar
Bekessy, S. A. et al. The biodiversity bank cannot be a lending bank. Conserv. Lett. 3, 151–158 (2010).
Google Scholar
SBSTTA Draft Monitoring Framework for the Post-2020 Global Biodiversity Framework for Review (Subsidiary Body on Scientific, Technical and Technological Advice, 2020); https://www.cbd.int/sbstta24/review.shtml
Indicators for the Post-2020 Global Biodiversity Framework—Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership (UNEP-WCMC, 2020); https://www.cbd.int/sbstta24/review.shtml
Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Proposed Indicators and Monitoring Approach for the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3Add.1 (Subsidiary Body on Scientific, Technical and Technological Advice, 2020).
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework. Addendum. Appendices: Preliminary Draft Monitoring Framework for the Goals And Preliminary Draft Monitoring Framework for Targets CBD/WG2020/2/3/Add.1 (CBD, 2020).
UNEP-WCMC Indicators for the Post-2020 Global Biodiversity Framework. Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership and Incorporating Inputs from Peer Review CBD/SBSTTA/24/INF/20 (CBD, 2021).
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Proposed Headline Indicators of the Monitoring Framework for the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3/Add.1 (CBD, 2021).
Geldmann, J. et al. Essential indicators for measuring site-based conservation effectiveness in the post-2020 global biodiversity framework. Conserv. Lett. https://doi.org/10.1111/conl.12792 (2021).
Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2020).
Google Scholar
Ferrer-Paris, J. R. et al. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv. Lett. 12, e12623 (2019).
Google Scholar
Brown, C. J. et al. Opportunities for improving recognition of coastal wetlands in global ecosystem assessment frameworks. Ecol. Indic. 126, 107694 (2021).
Google Scholar
Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index, Version 3 Monthly Sea Ice Extent (NSIDC, 2017).
Karger, D. N., Kessler, M., Lehnert, M. & Jetz, W. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01450-y (2021).
Skowno, A. L., Jewitt, D. & Slingsby, J. A. Rates and patterns of habitat loss across South Africa’s vegetation biomes. South Afr. J. Sci. 117, 8182 (2021).
Murray, N. J. et al. Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. v. 1.0 (Wildlife Conservation Society, 2020).
Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv. Biol. 35, 325–335 (2020).
Google Scholar
Fuller, R. M., Smith, G. M. & Devereux, B. J. The characterisation and measurement of land cover change through remote sensing: problems in operational applications? Int. J. Appl. Earth Observ. Geoinf. 4, 243–253 (2003).
Google Scholar
Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981–981 (2014).
Google Scholar
Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).
Google Scholar
Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B 280, 20122649 (2013).
Google Scholar
Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).
Google Scholar
Fraixedas, S. et al. A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol. Indic. 118, 106728 (2020).
Google Scholar
Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).
Google Scholar
Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B Biol. Sci. 282, 20151348 (2015).
Google Scholar
Peterson, G. D., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
Google Scholar
Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).
Google Scholar
Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, e3000247 (2019).
Google Scholar
Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring eological integrity within protected areas. Bioscience 53, 851–860 (2003).
Google Scholar
Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).
Google Scholar
Juffe-Bignoli, D. et al. Assessing the cost of global biodiversity and conservation knowledge. PLoS ONE 11, e0160640 (2016).
Google Scholar
Rowland, J. A., Lee, C. K. F., Bland, L. M. & Nicholson, E. Testing the performance of ecosystem indices for biodiversity monitoring. Ecol. Indic. 116, 106453 (2020).
Google Scholar
Collen, B. & Nicholson, E. Taking the measure of change. Science 346, 166–167 (2014).
Google Scholar
Branch, T. A. et al. The trophic fingerprint of marine fisheries. Nature 468, 431–435 (2010).
Google Scholar
Fu, C. et al. Making ecological indicators management ready: assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Indic. 105, 16–28 (2019).
Google Scholar
Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).
Google Scholar
Hansen, M. C. & Loveland, T. R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012).
Google Scholar
Stevenson, S. L. et al. Matching biodiversity indicators to policy needs. Conserv. Biol. 35, 522–532 (2021).
Google Scholar
Han, X. et al. Monitoring national conservation progress with indicators derived from global and national datasets. Biol. Conserv. 213, 325–334 (2017).
Google Scholar
Stephenson, P. J. & Stengel, C. An inventory of biodiversity data sources for conservation monitoring. PLoS ONE 15, e0242923 (2020).
Google Scholar
Bhatt, R. et al. Uneven use of biodiversity indicators in 5th National Reports to the Convention on Biological Diversity. Environ. Conserv. 47, 15–21 (2020).
Google Scholar
Hein, L. et al. Defining ecosystem assets for natural capital accounting. PLoS ONE 11, e0164460 (2016).
Google Scholar
Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).
Google Scholar
Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).
Google Scholar
Goodwin, K. D. et al. DNA Sequencing as a tool to monitor marine ecological status. Front. Marine Sci. 4, 107 (2017).
Google Scholar
Pace, M. L., Carpenter, S. R. & Cole, J. J. With and without warning: managing ecosystems in a changing world. Front. Ecol. Environ. 13, 460–467 (2015).
Google Scholar
Scheffer, M., Carpenter, S. R., Dakos, V. & Nes, E. H. V. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).
Google Scholar
Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097 (2014).
Google Scholar
Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).
Google Scholar
Zhao, L.-X. et al. Fairy circles reveal the resilience of self-organized salt marshes. Sci. Adv. 7, eabe1100 (2021).
Google Scholar
Sievers, M. et al. Integrating outcomes of IUCN red list of ecosystems assessments for connected coastal wetlands. Ecol. Indic. 116, 106489 (2020).
Google Scholar
Allen, C. R. et al. Quantifying spatial resilience. J. Appl Ecol. 53, 625–635 (2016).
Google Scholar
Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).
Google Scholar
Moonlight, P. W. et al. Expanding tropical forest monitoring into dry forests: The DRYFLOR protocol for permanent plots. Plants People Planet 3, 295–300 (2021).
Google Scholar
Réjou-Méchain, M. et al. Unveiling African rainforest composition and vulnerability to global change. Nature 593, 90–94 (2021).
Google Scholar
Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).
Google Scholar
Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).
Google Scholar
Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).
Google Scholar
Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9, 129 (2020).
Google Scholar
The IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org/
An Indicator of the Conservation Status of Useful Wild Plants (CIAT, 2020); https://ciat.cgiar.org/usefulplants-indicator/
Measuring Change in the Extent of Water-Related Ecosystems Over time. Sustainable Development Goal Monitoring Methodology Indicator 6.6.1 (UNEP, UN Water, 2020).
Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).
Google Scholar
Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 9–20 (2015).
Google Scholar
Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).
Google Scholar
Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).
Google Scholar
Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).
Google Scholar
Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35 (2016).
Google Scholar
Ferrier, S., Harwood, T. D., Ware, C. & Hoskins, A. J. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol. Indic. 117, 106554 (2020).
Google Scholar
Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).
Google Scholar
McRae, L., Deinet, S. & Freeman, R. The Diversity-Weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).
Google Scholar
Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 26, 760–771 (2020).
Google Scholar
Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, e140 (2007).
Google Scholar
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
Google Scholar
Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12592 (2020).
Google Scholar
Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).
Google Scholar
DiMiceli, C., Townshend, J., Carroll, M. & Sohlberg, R. Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sens. Environ. 254, 112271 (2021).
Google Scholar
Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Marine Sci. 6, 580 (2019).
Google Scholar
Sims, N. C. et al. Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 92, 349–355 (2019).
Google Scholar
Kogan, F. N. Global drought watch from space. Bull. Am. Meteorol. Soc. 78, 621–636 (1997).
Google Scholar
Stelzer, K., Simis, S. & Müller, D. Copernicus Global Land Operations, Cryosphere and Water, CGLOPS-2, Framework Service Contract N° 199496 (JRC): Product User Manual Lake Waters, 300M and 1KM products, Versions 1.3.0–1.4.0, Issue I1.10 (Copernicus, 2020).
Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium 1783–1793 (2006).
Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).
Google Scholar
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Google Scholar
Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).
Google Scholar
Purvis, A. A single apex target for biodiversity would be bad news for both nature and people. Nat. Ecol. Evol. 4, 768–769 (2020).
Google Scholar
Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).
Google Scholar
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
Google Scholar
Preston, B. J. & Adam, P. Describing and listing threatened ecological communities under the Threatened Species Conservation Act 1995 (NSW): part 1—the assemblage of species and the particular area. Environ. Plan. Law J. 21, 250–263 (2004).
Noss, R. F. Ecosystems as conservation targets. Trends Ecol. Evol. 11, 351 (1996).
Google Scholar
Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front Ecol. Environ. 16, 29–36 (2018).
Google Scholar
Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).
Google Scholar
Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
Google Scholar
Grafton, R. Q. et al. Realizing resilience for decision-making. Nat. Sustain. 2, 907–913 (2019).
Google Scholar
Chambers, J. C., Allen, C. R. & Cushman, S. A. Operationalizing ecological resilience concepts for managing species and ecosystems at risk. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00241 (2019).
Higuera, P. E. et al. Integrating subjective and objective dimensions of resilience in fire-prone landscapes. Bioscience 69, 379–388 (2019).
Google Scholar
Newton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).
Google Scholar
Williams, R. J. et al. An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South-Eastern Australia. Austral Ecol. 40, 433–443 (2015).
Google Scholar
Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S. & Johnston, E. L. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol. 40, 482–491 (2015).
Google Scholar
Rohwer, Y. & Marris, E. Ecosystem integrity is neither real nor valuable. Conserv. Sci. Pract. 3, e411 (2021).
Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Scientific and Technical information to support the review of the Proposed Goals and Targets in the Updated Zero Draft of the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3/Add.2 (CBD, 2021).
McNellie, M. J. et al. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Change Biol. 26, 6702–6714 (2020).
Google Scholar
Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).
Google Scholar
Source: Ecology - nature.com