Bai, X. J., Wang, B. R., An, S. S., Zeng, Q. C. & Zhang, H. X. Response of forest species to C:N:P in the plant–litter–soil system and stoichiometric homeostasis of plant tissue during afforestation on the Loess Plateau, China. CATENA 183, 104186 (2019).
Google Scholar
Zhao, X. N., Wu, P. T., Gao, X. D. & Persaud, N. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degrad. Dev. 26(1), 54–61 (2015).
Google Scholar
Penuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N, and P in Earth’s life system. GCB Bioenergy 18(1), 3–6 (2012).
Zhao, Z. P. et al. Effects of chemical fertilizer combined with organic manure on Fuji apple quality, yield and soil fertility in apple orchard on the Loess Plateau of China. Int. J. Agric. Biol. Eng. 7(2), 45–55 (2014).
Google Scholar
Treseder, K. K. & Vitousek, P. M. Effects of soil nutrient availability on investment in acquisition of N and P in Havaiian rain forests. Ecology 82(4), 946–954 (2001).
Google Scholar
Vitousek, P. M. Nutrient cycling and nutrient use efficiency. Am. Nat. 119(4), 553–573 (1984).
Google Scholar
Zhong, Y. Q. W., Yan, W. M., Xu, X. B. & Shangguan, Z. P. Influence of nitrogen fertilization on wheat, and soil carbon, nitrogen and phosphorus stoichiometry characteristics. Int. J. Agric. Biol. 17, 1179–2118 (2015).
Google Scholar
Cui, Q., Lü, X. T., Wang, Q. B. & Han, X. G. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant Soil 334, 209–219 (2010).
Google Scholar
Louis, A. S. et al. Decadal changes in soil carbon and nitrogen under a range of irrigation and phosphorus fertilizer treatments. Soil Sci. Soc. Am. J. 77(1), 246–256 (2012).
Ostertag, R. Foliar nitrogen and phosphorus accumulation responses after fertilization: An example from nutrient-limited Hawaiian forests. Plant Soil 334, 85–98 (2010).
Google Scholar
Hu, Q. J., Sheng, M. Y., Bai, Y. X., Jie, Y. & Xiao, H. L. Response of C, N, and P stoichiometry characteristics of Broussonetia papyrifera to altitude gradients and soil nutrients in the karst rocky ecosystem, SW China. Plant Soil https://doi.org/10.1007/s11104-020-04742-7 (2020).
Google Scholar
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
Zhang, G. Q., Zhang, P., Peng, S. Z., Chen, Y. M. & Cao, Y. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Sci. Rep. 7(1), 11754 (2017).
Google Scholar
Pang, Y. et al. The linkages of plant, litter and soil C:N:P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. PeerJ 8(4), e9274 (2020).
Google Scholar
Heyburn, J., Mckenzie, P., Crawlwy, M. J. & Fornara, D. A. Effects of grassland management on plant C:N:P stoichiomtry: Implications for soil elment cycling and storage. Ecosphere 8(10), e01963 (2017).
Google Scholar
Sun, X. et al. Initial responses of grass litter tissue chemistry and N:P stoichiometry to varied N and P input rates and ratios in Inner Mongolia. Agric. Ecosyst. Environ. 252, 114–125 (2018).
Google Scholar
Ding, F. et al. Opposite effects of nitrogen fertilization and plastic film mulching on crop N and P stoichiometry in a temperate agroecosystem. J. Plant Ecol. 12(4), 682–692 (2019).
Google Scholar
Ye, Y. S. et al. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements. PLoS ONE 9(7), e101776 (2014).
Google Scholar
Sistla, S. A., Appling, A. P., Lewandowska, A. M., Taylor, B. N. & Wolf, A. A. Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 124(7), 949–959 (2015).
Google Scholar
Ladanai, S., Ågren, G. I. & Olsson, B. A. Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13(2), 302–316 (2010).
Google Scholar
Lu, J. Y. et al. Leaf resorption and stoichiometry of N and P of 1, 2 and 3 year-old alfalfa under one-time P fertilization. Soil Till. Res. 197, 104481 (2020).
Google Scholar
Lu, J. Y., Yang, M., Liu, M. G., Lu, Y. X. & Yang, H. M. Nitrogen and phosphorus fertilizations alter nitrogen, phosphorus and potassium resorption of alfalfa in the Loess Plateau of China. J. Plant Nutr. 42(18), 2234–2246 (2019).
Google Scholar
Jiang, H. M., Jiang, J. P., Jia, Y., Li, F. M. & Xu, J. Z. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biol. Biochem. 38(8), 2350–2358 (2006).
Google Scholar
Gu, Y. J. et al. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop Res. 215, 94–103 (2018).
Google Scholar
Herbert, D. A., Williams, M. & Rastetter, E. B. A model analysis of N and P limitaiton on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry 65, 121–150 (2003).
Google Scholar
Zhang, L. X., Bai, Y. F. & Han, X. G. Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Bot. Sin. 46, 259–270 (2004).
Stewart, J. R., Kennedy, G. J., Landes, R. D. & Dawson, J. Foliar-nitrogen and phosphorus resorption patterns differ among nitrogen-fixing and nonfixing temperate-deciduous trees and shrubs. Int. J. Plant Sci. 169(4), 495–502 (2008).
Google Scholar
Vance, C. P., Uhde-Stone, C. & Allan, D. L. Phosphorus acquisition and use: Critical adaptations by plant for securing a non renewable resource. New Phytol. 157, 423–447 (2003).
Google Scholar
Han, W. X., Fang, J. Y., Guo, D. L. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168(2), 377–385 (2005).
Google Scholar
Ma, H. M. et al. Moderate clipping stimulates over-compensatory growth of Leymus chinensis under saline-alkali stress throuth high allocation of biomass and nitrogen to shoots. Plant Growth Regul. 92, 95–106 (2020).
Google Scholar
Sophie, Z. B. et al. The application of ecological stoichiometry to plant–microbial-soil organic matter transformations. Ecol. Monogr. 85(2), 133–155 (2015).
Google Scholar
Schmitt, A., Pausch, J. & Kuzyakov, Y. C and N allocation in soil under ryegrass and alfalfa extimated by 13C and 15N labelling. Plant Soil 368, 581–590 (2013).
Google Scholar
Koerselman, W. & Meuleman, A. F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).
Google Scholar
Tian, H. G., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 98, 139–151 (2010).
Google Scholar
Ding, X. Q. et al. Establishing P fertilization reconmendation index of different vegetables by STP with the “3414” field experiments in South China. Int. J. Agric. Biol. 16, 603–608 (2014).
Google Scholar
Suo, Y. Y. et al. Local-scale determinants of elemental stoichiometry of soil in an old-growth temperate forest. Plant Soil 408, 401–414 (2016).
Google Scholar
Qiu, W. H., Liu, J. S., Li, B. Y. & Wang, Z. H. N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N and bacterial community. Environ. Sci. Pollut. Res. 27, 8673–8683 (2020).
Google Scholar
Appelhans, S. C., Barbagelata, P. A., Melchiori, R. J. M. & Boem, F. G. Assessing soil P fractions changes with long-term phosphorus fertilization related to crop yield of soybean and maize. Soil Use Manag. 36(3), 524–535 (2020).
Google Scholar
Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).
Google Scholar
Chen, X. D. et al. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs. Geoderma 349, 36–44 (2019).
Google Scholar
Van Huysen, T. L., Perakis, S. S. & Harmon, M. K. Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant Soil 406(1–2), 1–14 (2016).
Google Scholar
Li, M. et al. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoichiometry in leaves and fine roots. Plant Soil 445, 231–242 (2019).
Google Scholar
Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in fresh water, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).
Google Scholar
Shaver, G. R. & Melillo, J. M. Nutrient budgets of marsh plant: Efficiency concepts and relation to availability. Ecology 65, 1491–1510 (1984).
Google Scholar
De Vos, B., Van Meirvenne, M., Quataert, P. & Muys, B. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci. Soc. Am. J. 69(2), 500–510 (2005).
Google Scholar
Source: Ecology - nature.com