Costello, M. J., May, R. M. & Stork, N. E. Can we name Earth’s species before they go extinct? Science 339, 413–416 (2013).
Google Scholar
Mora, C., Rollo, A. & Tittensor, D. P. Comment on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).
Google Scholar
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).
Google Scholar
May, R. & Beverton, R. J. H. How many species? Phil. Trans. R. Soc. B 330, 293–304 (1990).
Google Scholar
Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).
Google Scholar
Raven, P. H. & Wilson, E. O. A fifty-year plan for biodiversity surveys. Science 258, 1099–1100 (1992).
Google Scholar
Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).
Google Scholar
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
Google Scholar
Guide to the Global Taxonomy Initiative (Secretariat of the Convention on Biological Diversity, 2010).
Costello, M. J., May, R. M. & Stork, N. E. Response to comments on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).
Google Scholar
Bebber, D. P., Marriott, F. H. C., Gaston, K. J., Harris, S. A. & Scotland, R. W. Predicting unknown species numbers using discovery curves. Proc. R. Soc. B 274, 1651–1658 (2007).
Google Scholar
Edie, S. M., Smits, P. D. & Jablonski, D. Probabilistic models of species discovery and biodiversity comparisons. Proc. Natl Acad. Sci. USA 114, 3666–3671 (2017).
Google Scholar
Guenard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proc. Natl Acad. Sci. USA 109, 7368–7373 (2012).
Google Scholar
Blackburn, T. M. & Gaston, K. J. What determines the probability of discovering a species – a study of South-American Oscine Passerine birds. J. Biogeogr. 22, 7–14 (1995).
Google Scholar
Costello, M. J., Lane, M., Wilson, S. & Houlding, B. Factors influencing when species are first named and estimating global species richness. Glob. Ecol. Conserv. 4, 243–254 (2015).
Google Scholar
Collen, B., Purvis, A. & Gittleman, J. L. Biological correlates of description date in carnivores and primates. Glob. Ecol. Biogeogr. 13, 459–467 (2004).
Google Scholar
Diniz-Filho, J. A. F. et al. Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob. Ecol. Biogeogr. 14, 469–477 (2005).
Google Scholar
Costello, M. J., Houlding, B. & Joppa, L. N. Further evidence of more taxonomists discovering new species, and that most species have been named: response to Bebber et al. (2014). New Phytol. 202, 739–740 (2014).
Google Scholar
Meiri, S. Small, rare and trendy: traits and biogeography of lizards described in the 21st century. J. Zool. 299, 251–261 (2016).
Google Scholar
Klein, J. P. & Moeschberger, M. L. Survival Analysis: Techniques for Censored and Truncated Data.(Springer, 2003).
Essl, F., Rabitsch, W., Dullinger, S., Moser, D. & Milasowszky, N. How well do we know species richness in a well-known continent? Temporal patterns of endemic and widespread species descriptions in the European fauna. Glob. Ecol. Biogeogr. 22, 29–39 (2013).
Google Scholar
Colli, G. R. et al. In the depths of obscurity: knowledge gaps and extinction risk of Brazilian worm lizards (Squamata, Amphisbaenidae). Biol. Conserv. 204, 51–62 (2016).
Google Scholar
Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).
Google Scholar
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).
Google Scholar
Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).
Google Scholar
Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).
Google Scholar
Joppa, L. N., Roberts, D. L. & Pimm, S. L. How many species of flowering plants are there? Proc. R. Soc. B 278, 554–559 (2011).
Google Scholar
Giam, X. et al. Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proc. R. Soc. B 279, 67–76 (2012).
Google Scholar
Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).
Google Scholar
Gouveia, S. F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R. & Ferrari, S. F. Forest structure drives global diversity of primates. J. Anim. Ecol. 83, 1523–1530 (2014).
Google Scholar
Oliveira, B. F. & Scheffers, B. R. Vertical stratification influences global patterns of biodiversity. Ecography 42, 249–249 (2019).
Google Scholar
Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244 (2016).
Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).
Google Scholar
Garnett, S. T. & Christidis, L. Taxonomy anarchy hampers conservation. Nature 546, 25–27 (2017).
Google Scholar
Isaac, N. J. B., Mallet, J. & Mace, G. M. Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol. Evol. 19, 464–469 (2004).
Google Scholar
Bremer, K., Bremer, B., Karis, P. & Källersjö, M. Time for change in taxonomy. Nature 343, 202 (1990).
Google Scholar
Raposo, M. A. et al. What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017). Zootaxa 4317, 179–184 (2017).
Google Scholar
Wake, D. B. Persistent plethodontid themes: species, phylogenies, and biogeography. Herpetologica 73, 242–251 (2017).
Google Scholar
Tedesco, P. A. et al. Estimating how many undescribed species have gone extinct. Conserv. Biol. 28, 1360–1370 (2014).
Google Scholar
Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).
Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Google Scholar
Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).
Google Scholar
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).
Google Scholar
González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563.e3 (2019).
Google Scholar
Moura, M. R. et al. Geographical and socioeconomic determinants of species discovery trends in a biodiversity hotspot. Biol. Conserv. 220, 237–244 (2018).
Google Scholar
Gaston, K. J., Blackburn, T. M. & Loder, N. Which species are described first? The case of North-American butterflies. Biodivers. Conserv. 4, 119–127 (1995).
Google Scholar
Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).
Google Scholar
Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).
Google Scholar
Hallmann, K. & Griebeler, E. M. An exploration of differences in the scaling of life history traits with body mass within reptiles and between amniotes. Ecol. Evol. 8, 5480–5494 (2018).
Google Scholar
Slavenko, A., Itescu, Y., Ihlow, F. & Meiri, S. Home is where the shell is: predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114 (2016).
Google Scholar
Regis, K. W. & Meik, J. M. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data. PeerJ 5, e2914 (2017).
Google Scholar
Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. H. & Meiri, S. Is the island rule general? Turtles disagree. Glob. Ecol. Biogeogr. 23, 689–700 (2014).
Google Scholar
Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).
Google Scholar
Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
Google Scholar
Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204A, 23–31 (2016).
Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).
Google Scholar
Gaston, K. J., Blackburn, T. M. & Lawton, J. H. Interspecific abundance–range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 66, 579–601 (1997).
Google Scholar
Borregaard, M. K. & Rahbek, C. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85, 3–25 (2010).
Google Scholar
IUCN Red List of Threatened Species. Version 2018 (IUCN, 2018).
Freitag, S., Hobson, C., Biggs, H. C. & Jaarsveld, A. S. Testing for potential survey bias: the effect of roads, urban areas and nature reserves on a southern African mammal data set. Anim. Conserv. 1, 119–127 (1998).
Google Scholar
Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv. 10, 1513–1529 (2001).
Google Scholar
Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).
Google Scholar
Papavero, N. Essays on the History of Neotropical Dipterology: With Special Reference to Collectors: 1750–1905: Vol. I (Museu de Zoologia da Universidade de São Paulo, 1971).
Baselga, A., Lobo, J. M., Hortal, J., Jiménez-Valverde, A. & Gómez, J. F. Assessing alpha and beta taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms. J. Zool. Syst. Evol. Res. 48, 40–49 (2010).
Google Scholar
Yang, W., Ma, K. & Kreft, H. Environmental and socio-economic factors shaping the geography of floristic collections in China. Glob. Ecol. Biogeogr. 23, 1284–1292 (2014).
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing Version 3.5.3 (R Foundation for Statistical Computing, 2019).
Hijmans, R. J. raster: Geographic Data Analysis and Modeling https://cran.r-project.org/package=raster (2015).
Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).
Google Scholar
Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
Google Scholar
Joppa, L. N., Roberts, D. L. & Pimm, S. L. The population ecology and social behaviour of taxonomists. Trends Ecol. Evol. 26, 551–553 (2011).
Google Scholar
Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.3.1 http://stringr.tidyverse.org (2018).
Mahto, A. splitstackshape: Stack and Reshape Datasets After Splitting Concatenated Values. R package version 1.4.6 http://github.com/mrdwab/splitstackshape (2018).
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
Google Scholar
Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models (McGraw-Hill, 2004).
Naimi, B. usdm: Uncertainty Analysis for Species Distribution Models https://cran.r-project.org/package=usdm (2017).
von Linné, C. Systema Naturae https://doi.org/10.5962/bhl.title.542 (Impensis Direct Laurentii Salvii, 1758).
Harrell, F. E. Regression Modeling Strategies (Springer, 2001).
George, B., Seals, S. & Aban, I. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694 (2014).
Google Scholar
Jackson, C. flexsurv: a platform for parametric survival modeling in R. J. Stat. Softw. 70, 1–33 (2016).
Google Scholar
Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
Google Scholar
Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.6 https://cran.r-project.org/package=MuMIn (2019).
Alexander Pyron, R. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).
Google Scholar
Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
Google Scholar
Fisher, D. O. & Blomberg, S. P. Correlates of rediscovery and the detectability of extinction in mammals. Proc. R. Soc. B 278, 1090–1097 (2011).
Google Scholar
Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, e303 (2008).
Google Scholar
Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2011).
Google Scholar
Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).
Google Scholar
Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.4 https://cran.r-project.org/package=data.table (2019).
Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).
Google Scholar
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).
Google Scholar
Database of Global Administrative Areas Version 3.6 (GADM, 2019); http://www.gadm.org
Source: Ecology - nature.com