in

Spatial asymmetry of the paternity success in nests of a fish with alternative reproductive tactics

  • 1.

    Gross, M. R. Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol. Evol. 11, 92–98 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Oliveira, R. F., Taborsky, M. & Brockmann, H. J. Alternative Reproductive Tactics: An Integrative Approach (Cambridge University Press, Cambridge, 2008).

    Google Scholar 

  • 3.

    Taborsky, M., Oliveira, R. F. & Brockmann, H. J. The evolution of alternative reproductive tactics: concepts and questions. In Alternative Reproductive Tactics: An Integrative Approach, pp 1–21 (eds Oliveira, R. F. et al.) (Cambridge University Press, Cambridge, 2008).

    Google Scholar 

  • 4.

    Parker, G. A. Sperm competition games: sneaks and extrapair copulations. Proc. R. Soc. Lond. B Biol. Sci. 242, 127–133 (1990).

    ADS  Article  Google Scholar 

  • 5.

    Parker, G. A. Sperm games. In Sperm Competition and Sexual Selection (eds Birkhead, T. R. & Moller, A. P.) 3–54 (Academic Press, New York, 1998).

    Google Scholar 

  • 6.

    Locatello, L., Poli, F. & Rasotto, M. B. Tactic-specific differences in seminal fluid influence sperm performance. Proc. R. Soc. Lond. B Biol. Sci. 280, 20122891 (2013).

    Google Scholar 

  • 7.

    Lewis, J. A. & Pitcher, T. E. The effects of rival seminal plasma on sperm velocity in the alternative reproductive tactics of Chinook salmon. Theriogenology 92, 24–29 (2017).

    PubMed  Article  Google Scholar 

  • 8.

    Parker, G. A., Ball, M. A., Stockley, P. & Gage, M. J. Sperm competition games: individual assessment of sperm competition intensity by group spawners. Proc. R. Soc. Lond. B Biol. Sci. 263, 1291–1297 (1996).

    ADS  Article  Google Scholar 

  • 9.

    Pilastro, A., Scaggiante, M. & Rasotto, M. B. Individual adjustment of sperm expenditure accords with sperm competition theory. PNAS 99, 9913–9915 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Candolin, U. & Reynolds, J. D. Adjustments of ejaculation rates in response to risk of sperm competition in a fish, the bitterling (Rhodeus sericeus). Proc. R. Soc. Lond. B Biol. Sci. 269, 1549–1553 (2002).

    Article  Google Scholar 

  • 11.

    Scaggiante, M., Rasotto, M. B., Romualdi, C. & Pilastro, A. Territorial male gobies respond aggressively to sneakers but do not adjust their sperm expenditure. Behav. Ecol. 16, 1001–1007 (2005).

    Article  Google Scholar 

  • 12.

    Neff, B. D. & Gross, M. R. Dynamic adjustment of parental care in response to perceived paternity. Proc. R. Soc. Lond. B Biol. Sci. 268, 1559–1565 (2001).

    CAS  Article  Google Scholar 

  • 13.

    Klug, H., Alonzo, S. H. & Bonsall, M. B. Theoretical foundations of parental. Evol. Parent. Care 103, 21–36 (2012).

    Google Scholar 

  • 14.

    Bose, A. P., Kou, H. H. & Balshine, S. Impacts of direct and indirect paternity cues on paternal care in a singing toadfish. Behav. Ecol. 27, 1507–1514 (2016).

    Article  Google Scholar 

  • 15.

    Manica, A. Parental fish change their cannibalistic behaviour in response to the cost-to-benefit ratio of parental care. Anim. Behav. 67, 1015–1021 (2004).

    Article  Google Scholar 

  • 16.

    Gray, S. M., Dill, L. M. & McKinnon, J. S. Cuckoldry incites cannibalism: male fish turn to cannibalism when perceived certainty of paternity decreases. Am. Nat. 169, 258–263 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Gray, S. M., McKinnon, J. S., Tantu, F. Y. & Dill, L. M. Sneaky egg-eating in Telmatherina sarasinorum, an endemic fish from Sulawesi. J. Fish Biol. 73, 728–731 (2008).

    Article  Google Scholar 

  • 18.

    Mehlis, M., Bakker, T. C., Engqvist, L. & Frommen, J. G. To eat or not to eat: egg-based assessment of paternity triggers fine-tuned decisions about filial cannibalism. Proc. R. Soc. Lond. B Biol. Sci. 277, 2627–2635 (2010).

    Google Scholar 

  • 19.

    Bose, A. P., Lau, M. J., Cogliati, K. M., Neff, B. & Balshine, S. Cannibalism of young is related to low paternity and nest take-overs in an intertidal fish. Anim. Behav 153, 41–48 (2019).

    Article  Google Scholar 

  • 20.

    Coleman, S. W. & Jones, A. G. Patterns of multiple paternity and maternity in fishes. Biol. J. Linn. Soc. 103, 735–760 (2011).

    Article  Google Scholar 

  • 21.

    Pujolar, J. M., Locatello, L., Zane, L. & Mazzoldi, C. Body size correlates with fertilization success but not gonad size in grass goby territorial males. PLoS ONE 7, e46711 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Wirtz Ocana, S., Meidl, P., Bonfils, D. & Taborsky, M. Y-linked Mendelian inheritance of giant and dwarf male morphs in shell-brooding cichlids. Proc. R. Soc. Lond. B Biol. Sci. 281, 20140253 (2014).

    Google Scholar 

  • 23.

    Ota, K., Awata, S., Morita, M., Yokoyama, R. & Kohda, M. Territorial males can sire more offspring in nests with smaller doors in the cichlid Lamprologus lemairii. J. Hered. 105, 416–422 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Ota, K. & Kohda, M. How and to what extent do sneakers gain proximity to females in an externally fertilizing fish?. Anim. Behav. 108, 129–136 (2015).

    Article  Google Scholar 

  • 25.

    Mascolino, S. et al. The ART of mating: alternative reproductive tactics and mating success in a nest-guarding fish. J. Fish Biol. 89, 2643–2657 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Monroe, M. J., Amundsen, T., Utne-Palm, A. C. & Mobley, K. B. Seasonal variation in male alternative reproductive tactics. J. Evol. Biol. 29, 2362–2372 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Withler, R. E. et al. Polygamous mating and high levels of genetic variation in lingcod, Ophiodon elongatus of the Strait of Georgia, British Columbia in Genetics of Subpolar Fish and Invertebrates of the Strait of Georgia, British Columbia in Genetics of Subpolar Fish and Invertebrates 345–357 ( Springer, Dordrecht, 2004).

    Google Scholar 

  • 28.

    Stoltz, J. A. & Neff, B. D. Male size and mating tactic influence proximity to females during sperm competition in bluegill sunfish. Behav. Ecol. Sociobiol. 59, 811–818 (2006).

    Article  Google Scholar 

  • 29.

    Egeland, T. B., Rudolfsen, G., Nordeide, J. T. & Folstad, I. On the relative effect of spawning asynchrony, sperm quantity, and sperm quality on paternity under sperm competition in an external fertilizer. Front. Ecol. Evol. 3, 77 (2015).

    Article  Google Scholar 

  • 30.

    Poli, F., Immler, S. & Gasparini, C. Effects of ovarian fluid on sperm traits and its implications for cryptic female choice in zebrafish. Behav Ecol 30, 1298 (2019).

    Article  Google Scholar 

  • 31.

    Taborsky, M., Schütz, D., Goffinet, O. & van Doorn, G. S. Alternative male morphs solve sperm performance/longevity trade-off in opposite directions. Sci. Adv. 4, eaap8563 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Svensson, O. & Kvarnemo, C. Sexually selected nest-building Pomatoschistus minutus males build smaller nest-openings in the presence of sneaker males. J. Evol. Biol. 16, 896–902 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Oliveira, R. F. et al. The relationship between the presence of satellite males and nest-holders’ mating success in the Azorean rock-pool blenny Parablennius sanguinolentus parvicornis. Ethology 108, 223–235 (2002).

    Article  Google Scholar 

  • 34.

    Lee, J. S. & Bass, A. H. Dimorphic male midshipman fish: reduced sexual selection or sexual selection for reduced characters?. Behav. Ecol. 17, 670–675 (2006).

    Article  Google Scholar 

  • 35.

    Sato, T., Hirose, M., Taborsky, M. & Kimura, S. Size-dependent male alternative reproductive tactics in the shell-brooding cichlid fish Lamprologus callipterus in Lake Tanganyika. Ethology 110, 49–62 (2004).

    Article  Google Scholar 

  • 36.

    Locatello, L., Pilastro, A., Deana, R., Zarpellon, L. & Rasotto, M. B. Variation pattern of sperm quality traits in two gobies with alternative mating tactics. Funct. Ecol. 21, 975–981 (2007).

    Article  Google Scholar 

  • 37.

    Poli, F., Locatello, L. & Rasotto, M. B. Seminal fluid enhances competitiveness of territorial males’ sperm in a fish with alternative male reproductive tactics. J. Exp. Biol. 221, jeb175976 (2018).

    PubMed  Article  Google Scholar 

  • 38.

    Mazzoldi, C. & Rasotto, M. B. Alternative male mating tactics in Gobius niger. J. Fish Biol. 61, 157–172 (2002).

    Article  Google Scholar 

  • 39.

    Rasotto, M. B. & Mazzoldi, C. Male traits associated with alternative reproductive tactics in Gobius niger. J. Fish Biol. 61, 173–184 (2002).

    Article  Google Scholar 

  • 40.

    Poli, F. Ejaculates in competition: a sperm race influenced by the seminal fluid? Phd thesis, University of Padova (2015).

  • 41.

    Patwary, M. U., Kenchington, E. L., Bird, C. J. & Zouros, E. The use of random amplified polymorphic DNA (RAPD) markers in genetic studies of the sea scallop Placopecten magellanicus (Gmelin, 1791). J. Shellfish Res. 13, 547–553 (1994).

    Google Scholar 

  • 42.

    Gloor, G. & Engels, W. Single-fly DNA preps for PCR, single fly total RNA preparations for RT-PCR Dros. Inf. Serv. 71, 148–149 (1992).

    Google Scholar 

  • 43.

    Amos, W. et al. Automated binning of microsatellite alleles: problems and solutions. Mol. Ecol. Notes 7, 10–14 (2007).

    CAS  Article  Google Scholar 

  • 44.

    Gallini, A., Zane, L. & Bisol, P. M. Isolation and characterization of microsatellites in Zosterisessor ophiocephalus (Perciformes, Gobiidae). Mol. Ecol. Notes 5, 24–26 (2005).

    CAS  Article  Google Scholar 

  • 45.

    Ruggeri, P., Splendiani, A., Giovannotti, M., Nisi Cerioni, P. & Caputo, V. Isolation of novel microsatellite loci in the black goby Gobius niger and cross-amplification in other gobiid species (Perciformes,Gobiidae). J. Fish Biol. 81, 2044–2052 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Jones, A. G. Gerud 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol. Ecol. Notes 5, 708–711 (2005).

    CAS  Article  Google Scholar 

  • 47.

    Dodds, K. G., Tate, M. L., McEwan, J. C. & Crawford, A. M. Exclusion probabilities for pedigree testing farm animals. Theor. Appl. Genet. 92, 966–975 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Rousset, F. Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed  Article  Google Scholar 

  • 49.

    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).

    Article  Google Scholar 

  • 50.

    Bates, D. et al. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823 (2014).

  • 51.

    Brooks, M. E. et al. GlmmTMB balances speed and flexibility among packages for zero inflated generalized linear mixed modelling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  • 52.

    Team, R. C., 2017. R Core Team (2017). R: a language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. http://www.R-project.org/. page R Foundation for Statistical Computing.

  • 53.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. SSBM (2009).

  • 54.

    Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Lenth, R. & Lenth, M. R. Package ‘lsmeans’. Am. Stat 34, 216–221 (2018).

    Google Scholar 

  • 57.

    Poli, F. et al. Spatial asymmetry of the paternity success in nests of a fish with alternative reproductive tactics datasets. figshare. https://doi.org/10.6084/m9.figshare.13356218 (2020).

  • 58.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).

    Article  Google Scholar 

  • 59.

    Svensson, O. & Kvarnemo, C. Parasitic spawning in sand gobies: an experimental assessment of nest-opening size, sneaker male cues, paternity, and filial cannibalism. Behav. Ecol. 18, 410–419 (2007).

    Article  Google Scholar 

  • 60.

    Jones, A. G., Walker, D., Kvarnemo, C., Lindström, K. & Avise, J. C. How cuckoldry can decrease the opportunity for sexual selection: data and theory from a genetic parentage analysis of the sand goby, Pomatoschistus minutus. PNAS 98, 9151–9156 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 61.

    Neff, B. D. & Sherman, P. W. Decision making and recognition mechanisms. Proc. R. Soc. Lond. B Biol. Sci. 269, 1435–1441 (2002).

    Article  Google Scholar 

  • 62.

    Neff, B. D. & Sherman, P. W. Nestling recognition via direct cues by parental male bluegill sunfish (Lepomis macrochirus). Anim. Cogn. 6, 87–92 (2003).

    PubMed  Article  Google Scholar 

  • 63.

    Neff, B. D. & Sherman, P. W. In vitro fertilization reveals offspring recognition via self-referencing in a fish with paternal care and cuckoldry. Ethology 111, 425–438 (2005).

    Article  Google Scholar 

  • 64.

    Bozzetta, E. Filial cannibalism and paternity success in the black goby Gobius niger (L. 1758). Master thesis, University of Padova (2016).

  • 65.

    Bose, A. P. et al. Indirect cue of paternity uncertainty does not affect nest site selection or parental care in a Pacific toadfish. Behav. Ecol. Sociobiol. 74, 24 (2020).

    Article  Google Scholar 

  • 66.

    Knapp, R. A., Sikkel, P. C. & Vredenburg, V. T. Age of clutches in nests and the within-nest spawning-site preferences of three damselfish species (Pomacentridae). Copeia https://doi.org/10.2307/1446801 (1995).

    Article  Google Scholar 

  • 67.

    Sikkel, P. C. Effects of nest quality on male courtship and female spawning-site choice in an algal-nesting damselfish. Bull. Mar. Sci. 57, 682–689 (1995).

    Google Scholar 

  • 68.

    Matsumoto, Y., Takegaki, T., Tawa, A. & Natsukari, Y. Female within-nest spawning-site preference in a paternal brooding blenny and its effect on the female mate choice. J. Zool. 276, 48–53 (2008).

    Article  Google Scholar 

  • 69.

    Firman, R. C., Gasparini, C., Manier, M. K. & Pizzari, T. Postmating female control: 20 years of cryptic female choice. Trends Ecol. Evol. 32, 368–382 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Li, N., Takeyama, T., Jordan, L. A. & Kohda, M. Female control of paternity by spawning site choice in a cooperatively polyandrous cichlid. Behaviour 152, 231–245 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running