in

Spatial distribution of conspecific genotypes within chimeras of the branching coral Stylophora pistillata

  • 1.

    Rinkevich, B. & Weissman, I. L. Chimeras in colonial inverebrates: A synergistic symbiosis or somatic- and cell-germ parasitism? Symbiosis 4, 117–134 (1987).

    Google Scholar 

  • 2.

    Buss, L. W. Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc. Natl. Acad. Sci. U.S.A. 79, 5337–5341. https://doi.org/10.1073/pnas.79.17.5337 (1982).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Foster, K. R., Fortunato, A., Strassmann, J. E. & Queller, D. C. The costs and benefits of being a chimera. Proc. R. Soc. Lond. B 269, 2357–2362. https://doi.org/10.1098/rspb.2002.2163 (2002).

    Article 

    Google Scholar 

  • 4.

    Money, N. P. Fungal get-together. Nature 405, 751. https://doi.org/10.1038/35015659 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Franks, T., Botta, R., Thomas, M. & Franks, J. Chimerism in grapevines: Implications for cultivar identity, ancestry and genetic improvement. Theor. Appl. Genet. 104, 192–199. https://doi.org/10.1007/s001220100683 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Casares, A. & Sylvain, F. F. Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes. Evol. Ecol. 30, 953–972. https://doi.org/10.1007/s10682-016-9849-0 (2016).

    Article 

    Google Scholar 

  • 7.

    Santelices, B., González, A. V., Beltrán, J. & Flores, V. Coalescing red algae exhibit noninvasive, reversible chimerism. J. Phycol. 53, 59–69. https://doi.org/10.1111/jpy.12476 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Gauthier, M. & Degnan, B. M. Partitioning of genetically distinct cell populations in chimeric juveniles of the sponge Amphimedon queenslandica. Dev. Comp. Immunol. 32, 1270–1280. https://doi.org/10.1016/j.dci.2008.04.002 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Fidler, A. E., Bacq-Labreuil, A., Rachmilovitz, E. & Rinkevich, B. Efficient dispersal and substrate acquisition traits in a marine invasive species via transient chimerism and colony mobility. PeerJ 2018, 1–23. https://doi.org/10.7717/peerj.5006 (2018).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Rinkevich, B. & Weissman, I. Chimeras in colonial invertebrates: A synergistic symbiosis or somatic-and germ-cell parasitism. Symbiosis 4, 117–134 (1987).

    Google Scholar 

  • 11.

    Amar, K.-O., Chadwick, N. E. & Rinkevich, B. Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol. Biol. 8, 126–126. https://doi.org/10.1186/1471-2148-8-126 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Puill-Stephan, E., Willis, B., van Herwerden, L. & van Oppen, M. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef. PLoS One 4, e7751. https://doi.org/10.1371/journal.pone.0007751 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Hoeg, J. T. & Lutzen, J. Life cycle and reproduction in the Cirripedia, Rhizocephala. Oceanogr. Mar. Biol. Annu. Rev. 33, 427–485 (1995).

    Google Scholar 

  • 14.

    Gianasi, B. L., Hamel, J. F. & Mercier, A. Full allogeneic fusion of embryos in a holothuroid echinoderm. Proc. R. Soc. Lond. B 285, 1–7. https://doi.org/10.1098/rspb.2018.0339 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Rinkevich, B. Human natural chimerism: An acquired character or a vestige of evolution?. Hum. Immunol. 62, 651–657. https://doi.org/10.1016/S0198-8859(01)00249-X (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Gill, D. E., Chao, L., Perkins, S. L. & Wolf, J. B. Genetic mosaicism in plants and clonal animals. Annu. Rev. Ecol. Syst. 26, 423–444 (1995).

    Article 

    Google Scholar 

  • 17.

    Biesecker, L. G. & Spinner, N. B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307–320 (2013).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Devlin-Durante, M. K., Miller, M. W., Precht, W. F. & Baums, I. B. How old are you? Genet age estimates in a clonal animal. Mol. Ecol. 25, 5628–5646. https://doi.org/10.1111/mec.13865 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Dubé, C. E., Planes, S., Zhou, Y., Berteaux-Lecellier, V. & Boissin, E. On the occurrence of intracolonial genotypic variability in highly clonal populations of the hydrocoral Millepora platyphylla at Moorea (French Polynesia). Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-14684-3 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Maier, E., Buckenmaier, A., Tollrian, R. & Nürnberger, B. Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix. Coral Reefs 31, 505–517. https://doi.org/10.1007/s00338-011-0857-9 (2012).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Schweinsberg, M., Weiss, L. C., Striewski, S., Tollrian, R. & Lampert, K. P. More than one genotype: How common is intracolonial genetic variability in scleractinian corals? Mol. Ecol. 24, 2673–2685. https://doi.org/10.1111/mec.13200 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    van Oppen, M. J., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: Fuel for adaptation of reef corals? Diversity 3, 405–423 (2011).

    Article 

    Google Scholar 

  • 23.

    Rinkevich, B. A critical approach to the definition of Darwinian units of selection. Biol. Bull. 199, 231–240. https://doi.org/10.2307/1543179 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Rinkevich, B. The apex set-up for the major transitions in individuality. Evol. Biol. 46, 217–228. https://doi.org/10.1007/s11692-019-09481-x (2019).

    Article 

    Google Scholar 

  • 25.

    Santelices, B. How many kinds of individual are there? Trends Ecol. Evol. 14, 152–155. https://doi.org/10.1016/S0169-5347(98)01519-5 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Pineda-Krch, M. & Lehtilä, K. Costs and benefits of genetic heterogeneity within organisms. J. Evol. Biol. 17, 1167–1177. https://doi.org/10.1111/j.1420-9101.2004.00808.x (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Rinkevich, B. Quo vadis chimerism? Chimerism 2, 1–5. https://doi.org/10.4161/chim.14725 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Rinkevich, B. & Yankelevich, I. Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J. Exp. Biol. 207, 3531–3536. https://doi.org/10.1242/jeb.01184 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Raymundo, L. J. & Maypa, A. P. Getting bigger faster: Mediation of size-specific mortality via fusion in juvenile coral transplants. Ecol. Appl. 14, 281–295. https://doi.org/10.1890/02-5373 (2004).

    Article 

    Google Scholar 

  • 30.

    Rinkevich, B., Shaish, L., Douek, J. & Ben-Shlomo, R. Venturing in coral larval chimerism: A compact functional domain with fostered genotypic diversity. Sci. Rep. 6, 19493. https://doi.org/10.1038/srep19493 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Rinkevich, B. Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Glob. Chang Biol. 25, 1198–1206. https://doi.org/10.1111/gcb.14576 (2019).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Amar, K.-O., Chadwick, N. E. & Rinkevich, B. Coral planulae as dispersion vehicles: Biological properties of larvae released early and late in the season. Mar. Ecol. Prog. Ser. 350, 71–78. https://doi.org/10.3354/meps07125 (2007).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Rinkevich, B. Immunology of human implantation: From the invertebrate’s point of view. Hum. Reprod. 13, 455–459. https://doi.org/10.1093/humrep/13.2.503 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    González, A. V. & Santelices, B. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile. PLoS One 12, 1–20. https://doi.org/10.1371/journal.pone.0169182 (2017).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Nozawa, Y. & Hirose, M. When does the window close? The onset of allogeneic fusion 2–3 years post-settlement in the scleractinian coral, Echinophyllia aspera. Zool. Stud. 50, 396 (2011).

    Google Scholar 

  • 36.

    Puill-Stephan, E., van Oppen, M. J. H., Pichavant-Rafini, K. & Willis, B. L. High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, Acropora millepora. Proc. R. Soc. Lond. B Biol. Sci. 279, 699–708. https://doi.org/10.1098/rspb.2011.1035 (2012).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Frank, U., Oren, U., Loya, Y. & Rinkevich, B. Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, 4 months post-metamorphosis. Proc. R. Soc. Lond. B Biol. Sci. 264, 99–104. https://doi.org/10.1098/rspb.1997.0015 (1997).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Rinkevich, B. The branching coral Stylophora pistillata: Contribution of genetics in shaping colony landscape. Isr. J. Zool. 48, 71–82. https://doi.org/10.1560/BCPA-UM3A-MKBP-HGL2 (2002).

    Article 

    Google Scholar 

  • 39.

    Highsmith, R. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–226. https://doi.org/10.3354/meps007207 (1982).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Barfield, S., Aglyamova, G. V. & Matz, M. V. Evolutionary origins of germline segregation in Metazoa: Evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc. R. Soc. Lond. B Biol. Sci. 283, 20152128. https://doi.org/10.1098/rspb.2015.2128 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Chang, E. S., Orive, M. E. & Cartwright, P. Nonclonal coloniality: Genetically chimeric colonies through fusion of sexually produced polyps in the hydrozoan Ectopleura larynx. Evol. Lett. 2, 442–455. https://doi.org/10.1002/evl3.68 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Hancock, J. P., Goulden, N. J., Oakhill, A. & Steward, C. G. Quantitative analysis of chimerism after allogeneic bone marrow transplantation using immunomagnetic selection and fluorescent microsatellite PCR. Leukemia 17, 247–251. https://doi.org/10.1038/sj.leu.2402759 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Broestl, L., Rubin, J. B. & Dahiya, S. Fetal microchimerism in human brain tumors. Brain Pathol. 28, 484–494. https://doi.org/10.1111/bpa.12557 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Olsen, K. C., Moscoso, J. A. & Levitan, D. R. Somatic mutation is a function of clone size and depth in orbicella reef-building corals. Biol. Bull. 236, 1–12. https://doi.org/10.1086/700261 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Schweinsberg, M., Tollrian, R. & Lampert, K. P. Inter- and intra-colonial genotypic diversity in hermatypic hydrozoans of the family Milleporidae. Mar. Ecol. 38, 1–11. https://doi.org/10.1111/maec.12388 (2017).

    Article 

    Google Scholar 

  • 46.

    Santelices, B., Alvarado, J. L. & Flores, V. Size increments due to interindividual fusions: How much and for how long? J. Phycol. 46, 685–692. https://doi.org/10.1111/j.1529-8817.2010.00864.x (2010).

    Article 

    Google Scholar 

  • 47.

    Rinkevich, B. & Weissman, I. L. Chimeras vs genetically homegeneous individuals: Potential fitness costs and benefits. Oikos 63, 119–124 (1992).

    Article 

    Google Scholar 

  • 48.

    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Groups travel further: Pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs 33, 443–448. https://doi.org/10.1007/s00338-014-1135-4 (2014).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Lambert, N. C. et al. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: Studies of healthy women and women with scleroderma. Arthritis Rheumatol. 50, 906–914. https://doi.org/10.1002/art.20200 (2004).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Magor, B. G., De Tomoso, A., Rinkevich, B. & Weissman, I. L. Allorecognition in colonial tunicates: Protection against predatory cell lineages? Immunol. Rev. 167, 69–79. https://doi.org/10.1111/j.1600-065x.1999.tb01383.x (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Duerden, J. E. Aggregated colonies in madreporarian corals. Am. Nat. 34, 461–471 (1902).

    Article 

    Google Scholar 

  • 52.

    Barki, Y., Gateño, D., Graur, D. & Rinkevich, B. Soft-coral natural chimerism: A window in ontogeny allows the creation of entities comprised of incongruous parts. Mar. Ecol. Prog. Ser. 231, 91–99. https://doi.org/10.3354/meps231091 (2002).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Linden, B., Huisman, J. & Rinkevich, B. Circatrigintan instead of lunar periodicity of larval release in a brooding coral species. Sci. Rep. 8, 5668. https://doi.org/10.1038/s41598-018-23274-w (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Shefy, D., Shashar, N. & Rinkevich, B. The reproduction of the Red Sea coral Stylophora pistillata from Eilat: 4-decade perspective. Mar. Biol. 165, 27. https://doi.org/10.1007/s00227-017-3280-0 (2018).

    Article 

    Google Scholar 

  • 55.

    Shafir, S., Van Rijn, J. & Rinkevich, B. Steps in the construction of underwater coral nursery, an essential component in reef restoration acts. Mar. Biol. 149, 679–687. https://doi.org/10.1007/s00227-005-0236-6 (2006).

    Article 

    Google Scholar 

  • 56.

    Rinkevich, B. & Loya, Y. The reproduction of the Red Sea coral Stylophora pistillata. I. Gonads and planulae. Mar. Ecol. Prog. Ser. 1, 133–144 (1979).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Santelices, B. Mosaicism and chimerism as components of intraorganismal genetic heterogeneity. J. Evol. Biol. 17, 1187–1188. https://doi.org/10.1111/j.1420-9101.2004.00813.x (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Graham, D. E. The isolation of high molecular weight DNA from whole organisms or large tissue masses. Anal. Biochem. 85, 609–613. https://doi.org/10.1016/0003-2697(78)90262-2 (1978).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Douek, J., Barki, Y., Gateño, D. & Rinkevich, B. Possible cryptic speciation within the sea anemone Actinia equina complex detected by AFLP markers. Zool. J. Linn. Soc. 136, 315–320. https://doi.org/10.1046/j.1096-3642.2002.00034.x (2002).

    Article 

    Google Scholar 

  • 60.

    Banguera-Hinestroza, E., Saenz-Agudelo, P., Bayer, T., Berumen, M. L. & Voolstra, C. R. Characterization of new microsatellite loci for population genetic studies in the smooth cauliflower coral (Stylophora sp.). Conserv. Genet. Resour. 5, 561–563. https://doi.org/10.1007/s12686-012-9852-x (2013).

    Article 

    Google Scholar 

  • 61.

    Diwan, N. & Cregan, P. B. Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95, 723–733. https://doi.org/10.1007/s001220050618 (1997).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Hearne, C. M., Ghosh, S. & Todd, J. A. Microsatellites for linkage analysis of genetic traits. Trends Genet. 8, 288–294. https://doi.org/10.1016/0168-9525(92)90256-4 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Mapping classes of carbon

    Design’s new frontier