Hu, F. et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412, 235–251 (2017).
Google Scholar
Akhtar, K., Wang, W., Ren, G., Khan, A. & Wang, H. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ. Int. 132, 105092 (2019).
Google Scholar
Khan, I. et al. Yield gap analysis of major food crops in Pakistan: Prospects for food security. Environ. Sci. Pollut. R. 28, 1–18 (2020).
Khan, I. et al. Farm households’ risk perception, attitude and adaptation strategies in dealing with climate change: Promise and perils from rural Pakistan. Land Use Policy 91, 104395 (2020).
Google Scholar
Gan, Y., Chang, L., Wang, X. & Mcconkey, B. Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Res. 122, 199–206 (2011).
Google Scholar
Linquist, B., Groenigen, K., Adviento-Borbe, M. A., Pittelkow, C. & Kessel, C. V. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 18, 194–209 (2015).
Google Scholar
Hu, L. A. et al. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China. Agric. Ecosyst. Environ. 135, 24–33 (2010).
Google Scholar
Yang, X., Gao, W., Min, Z., Chen, Y. & Peng, S. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 76, 131–139 (2014).
Google Scholar
Wang, W. et al. Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Sci. Total Environ. 652, 471–482 (2019).
Google Scholar
Liu, C., Cutforth, H., Chai, Q. & Gan, Y. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron. Sustain. Dev. 36, 69 (2016).
Google Scholar
Chai, Q., Qin, A., Gan, Y. & Yu, A. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron. Sustain. Dev. 34, 535–543 (2014).
Google Scholar
Mariela, et al. Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions. Plant Soil 355, 183–197 (2012).
Google Scholar
Akhtar, K., Wang, W., Ren, G., Khan, A. & Wang, H. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 741, 140488 (2020).
Hu, F. et al. Less carbon emissions of wheat–maize intercropping under reduced tillage in arid areas. Agron. Sustain. Dev. 35, 701–711 (2015).
Google Scholar
Cong, W. F. et al. Intercropping enhances soil carbon and nitrogen. Glob. Change Biol. 21, 1715–1726 (2015).
Google Scholar
Beedy, T. L., Snapp, S. S., Akinni Fe Si, F. K. & Sileshi, G. W. Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric. Ecosyst. Environ. 138, 139–146 (2010).
Google Scholar
Lithourgidis, A. S., Dhima, K. V., Vasilakoglou, I. B., Dordas, C. A. & Yiakoulaki, M. Sustainable production of barley and wheat by intercropping common vetch. Agron. Sustain. Dev. 27, 95–99 (2007).
Google Scholar
Fan, Z. et al. Yield and water consumption characteristics of wheat/maize intercropping with reduced tillage in an Oasis region. Europ. J. Agron. 45, 52–58 (2013).
Google Scholar
Qin, A. Z., Huang, G. B., Chai, Q., Yu, A. Z. & Huang, P. Grain yield and soil respiratory response to intercropping systems on arid land. Field Crops Res. 144, 1–10 (2013).
Google Scholar
Hu, F. et al. Integration of wheat–maize intercropping with conservation practices reduces CO2 emissions and enhances water use in dry areas. Soil Till. Res. 169, 44–53 (2017).
Google Scholar
Yin, W. et al. Reducing carbon emissions and enhancing crop productivity through strip intercropping with improved agricultural practices in an arid area. J. Clean. Prod. 166, 197–208 (2017).
Google Scholar
Hou, R., Zhu, O., Wilson, G. V., Li, Y. & Li, H. Response of carbon dioxide emissions to warming under no-till and conventional till systems. Soil Sci. Soc. Am. J. 78, 1434–1441 (2014).
Google Scholar
Yin, W. et al. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int. J. Biometeorol. 60, 1423–1437 (2016).
Google Scholar
Lu, X., Lu, X., Tanveer, S. K., Wen, X. & Liao, Y. Effects of tillage management on soil CO2 emission and wheat yield under rain-fed conditions. Soil Res. 54, 38–48 (2016).
Luo, Z., Wang, E. & Sun, O. J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agr. Ecosyst. Environ. 139, 224–231 (2010).
Google Scholar
Akhtar, K., Wang, W., Ren, G., Khan, A. & Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Till. Res. 182, 94–102 (2018).
Yang, C., Huang, G., Qiang, C. & Luo, Z. Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China. Field Crops Res. 124, 426–432 (2011).
Google Scholar
Zhou, L. et al. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crops Res. 126, 181–188 (2012).
Google Scholar
Zhou, L., Li, F., Jin, S. & Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Res. 113, 41–47 (2009).
Google Scholar
Cuello, J. P., Hwang, H. Y., Gutierrez, J., Kim, S. Y. & Kim, P. J. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 91, 48–57 (2015).
Google Scholar
Bu, L. D. et al. Source–sink capacity responsible for higher maize yield with removal of plastic film. Agron. J. 105, 591–598 (2013).
Google Scholar
Li, Y. S. et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil Till. Res. 93, 370–378 (2007).
Google Scholar
Liu, Q. et al. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China. Sci. Rep. 6, 28150 (2016).
Google Scholar
Sial, T. et al. Co-application of milk tea waste and NPK fertilizers to improve sandy soil biochemical properties and wheat growth. Molecules 24, 423–440 (2019).
Willey, R. W. Resource use in intercropping systems. Agric. Water Manage. 17, 215–231 (2007).
Google Scholar
Li, L. et al. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res. 71, 123–137 (2001).
Yin, W. et al. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Res. 204, 42–51 (2017).
Google Scholar
Kashif, A., Wang, W., Ahmad, K., Ren, G. & Yang, G. Wheat straw mulching with fertilizer nitrogen: An approach for improving soil water storage and maize crop productivity. Plant Soil Environ. 64, 330–337 (2018).
Ussiri, D. & Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Till. Res. 104, 39–47 (2009).
Google Scholar
Wu, Y., Huang, F., Jia, Z., Ren, X. & Cai, T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Till. Res. 166, 113–121 (2017).
Google Scholar
Liu, J. et al. Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland. Agric. Ecosyst. Environ. 188, 20–28 (2014).
Ullah, A., Khan, D., Khan, I. & Zheng, S. Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace. Environ. Sci. Pollut. R. 25, 13938–13955 (2018).
Google Scholar
Allison, S. D., Wallenstein, M. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
Google Scholar
Chang, S. X., Zheng, S. & Thomas, B. R. Soil respiration and its temperature sensitivity in agricultural and afforested poplar plantation systems in northern Alberta. Biol. Fert. Soils 52, 629–641 (2016).
Google Scholar
Ding, W., Yan, C., Cai, Z., Yagi, K. & Zheng, X. Soil respiration under maize crops: Effects of water, temperature, and nitrogen fertilization. Soil Sci. Soc. Am. J. 71, 944–951 (2007).
Google Scholar
Li, L. J. et al. Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. Eur. J. Soil Bio. 55, 83–90 (2013).
Google Scholar
Kong, D., Liu, N., Wang, W., Akhtar, K. & Ren, G. Soil respiration from fields under three crop rotation treatments and three straw retention treatments. PLoS ONE 14, e0219253 (2019).
Google Scholar
Chen, C. R., Condron, L. M., Xu, Z. H., Davis, M. R. & Sherlock, R. R. Root, rhizosphere and root-free respiration in soils under grassland and forest plants. Eur. J. Agron. 57, 58–66 (2010).
Zhou, Z. et al. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biol. Biochem. 57, 135–143 (2013).
Google Scholar
Zhang, F., Li, M., Zhang, W., Li, F. & Qi, J. Ridge–furrow mulched with plastic film increases little in carbon dioxide efflux but much significant in biomass in a semiarid rainfed farming system. Agric. Forest Meteorol. 244–245, 33–41 (2017).
Google Scholar
Malhi, S. S., Lemke, R., Wang, Z. H., Chhabra, B. S. J. S. & Research, T. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Till. Res. 90, 171–183 (2006).
Google Scholar
Khan, I., Lei, H., Shah, A. A., Khan, I. & Muhammad, I. Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environ. Sci. Pollut. R. 28, 29720–29731 (2021).
Gan, Y. T., Siddique, K., Turner, N. C., Li, X. G. & Liu, L. P. Ridge-furrow mulching systems—An innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 118, 429–476 (2013).
Google Scholar
Ramakrishna, A., Tam, H. M., Wani, S. P. & Long, T. D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 95, 115–125 (2006).
Google Scholar
Liu, X. E., Li, X. G., Long, H., Yong, P. W. & Li, F. M. Film-mulched ridge–furrow management increases maize productivity and sustains soil organic carbon in a dryland cropping system. Soil Sci. Soc. Am. J. 78, 1434–1441 (2014).
Google Scholar
Source: Ecology - nature.com