in

Substrate thermal properties influence ventral brightness evolution in ectotherms

  • 1.

    Endler, J. A., Westcott, D. A., Madden, J. R. & Robson, T. Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59, 1795–1818 (2005).

    PubMed  Article  Google Scholar 

  • 2.

    Norris, K. S. & Lowe, C. H. An analysis of background color-matching in amphibians and reptiles. Ecology 45, 565–580 (1964).

    Article  Google Scholar 

  • 3.

    Allen, J. J., Mäthger, L. M., Barbosa, A. & Hanlon, R. T. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195, 547–555 (2009).

    PubMed  Article  Google Scholar 

  • 4.

    Cuthill, I. C. et al. The biology of color. Science https://doi.org/10.1126/science.aan0221 (2017).

  • 5.

    Seehausen, O., Van Alphen, J. J. M. & Lande, R. Color polymorphism and sex ratio distortion in a cichlid fish as an incipient stage in sympatric speciation by sexual selection. Ecol. Lett. 2, 367–378 (1999).

    Article  Google Scholar 

  • 6.

    Pérez-Rodríguez, L., Jovani, R. & Stevens, M. Shape matters: animal colour patterns as signals of individual quality. Proc. R. Soc. Lond. Ser. B Biol. Sci. 284, 20162446 (2017).

    Google Scholar 

  • 7.

    Tanaka, K. Thermal biology of a colour-dimorphic snake, Elaphe quadrivirgata, in a montane forest: Do melanistic snakes enjoy thermal advantages? Biol. J. Linn. Soc. 92, 309–322 (2007).

    Article  Google Scholar 

  • 8.

    Smith, K. R. et al. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proc. R. Soc. Lond. Ser. B Biol. Sci. 283, 20160626 (2016).

    Google Scholar 

  • 9.

    Christian, K. A. & Tracy, C. R. The effect of the thermal environment on the ability of hatchling galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218–223 (1981).

    PubMed  Article  Google Scholar 

  • 10.

    Clusella-Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).

    Article  Google Scholar 

  • 11.

    Moreno Azócar, D. L. et al. Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade. J. Exp. Biol. 219, 1162–1171 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Farouki, O. T. Thermal properties of soils. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. https://doi.org/10.4236/ojss.2011.13011 (1981).

  • 13.

    Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).

    Article  Google Scholar 

  • 14.

    Miller, G. E. in Introduction to Biomedical Engineering (3rd edn.) (eds. Enderle, J., & Bronzino, J.) pp. 937–993 (Academic press, 2012).

  • 15.

    Prota, G. Melanins and Melanogenesis (Academic Press, New York, 1992).

  • 16.

    Meredith, P. et al. Towards structure–property–function relationships for eumelanin. Soft Matter 2, 37–44 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Geen, M. R. S. & Johnston, G. R. Coloration affects heating and cooling in three color morphs of the Australian Bluetongue Lizard, Tiliqua scincoides. J. Therm. Biol. 43, 54–60 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Cordero, R. J. & Casadevall, A. Melanin. Curr. Biol. 30, R142–R143 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Jastrzebska, M. M., Isotalo, H., Paloheimo, J. & Stubb, H. Electrical conductivity of synthetic DOPA-melanin polymer for different hydration states and temperatures. J. Biomater. Sci. Polym. Ed. 7, 577–586 (1996).

    Article  Google Scholar 

  • 20.

    Mostert, A. B. et al. Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc. Natl Acad. Sci. USA 109, 8943–8947 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Mostert, A. B. et al. Understanding melanin: a nano-based material for the future. In Nanomaterials: Science and Applications (eds. D. M. Kane, A. Micolich & P. Roger) 175–202 (New York: Jenny Stanford Publishing, 2016).

  • 22.

    Kellicker, J., DiMarzio, C. A. & Kowalski, G. J. Computational model of heterogeneous heating in melanin. Optical Interact. Tissue Cells XXVI 9321, 93210H (2015).

    Google Scholar 

  • 23.

    Jastrzebska, M. M., Isotalo, H., Paloheimo, J. & Stubb, H. Electrical conductivity of synthetic dopa-melanin polymer for different hydration states and temperatures. J. Biomater. Sci. 7, 577–586 (1995).

    CAS  Article  Google Scholar 

  • 24.

    Wünsche, J. et al. Protonic and electronic transport in hydrated thin films of the pigment eumelanin. Chem. Mater. 27, 436–442 (2015).

    Article  CAS  Google Scholar 

  • 25.

    Rienecker, S. B., Mostert, A. B., Schenk, G., Hanson, G. R. & Meredith, P. Heavy water as a probe of the free radical nature and electrical conductivity of melanin. J. Phys. Chem. B 119, 14994–15000 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Migliaccio, L. et al. Evidence of unprecedented high electronic conductivity in mammalian pigment based eumelanin thin films after thermal annealing in vacuum. Front. Chem. 7, 162 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Rosenblum, E. B., Hoekstra, H. E. & Nachman, M. Adaptive reptile color variation and the evolution of the Mc1r gene. Evolution 58, 1794–1808 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Jackson, J. F., Iii, W. I. & Campbell, H. W. The dorsal pigmentation pattern of snakes as an antipredator strategy: a multivariate approach. Am. Naturalist 110, 1029 (1976).

    Article  Google Scholar 

  • 29.

    Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 2495–2499 (2004).

    Article  Google Scholar 

  • 30.

    Allen, W. L., Baddeley, R., Scott-Samuel, N. E. & Cuthill, I. C. The evolution and function of pattern diversity in snakes. Behav. Ecol. 24, 1237–1250 (2013).

    Article  Google Scholar 

  • 31.

    Clause, A. G. & Becker, R. N. Temperature shock as a mechanism for color pattern aberrancy in snakes. Herpetol. Notes 8, 331–334 (2015).

    Google Scholar 

  • 32.

    Ressel, S. & Schall, J. J. Parasites and showy males: malarial infection and color variation in fence lizards. Oecologia 78, 158–164 (1989).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Morrison, R. L., Rand, M. S. & Frost-Mason, S. K. Cellular basis of color differences in three morphs of the lizard Sceloporus undulatus erythrocheilus. Copeia 1995, 397–408 (1995).

  • 34.

    Stuart-Fox, D. M. & Ord, T. J. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 2249–2255 (2004).

    Article  Google Scholar 

  • 35.

    Langkilde, T. & Boronow, K. E. Hot boys are blue: temperature-dependent color change in male eastern fence lizards. J. Herpetol. 46, 461–465 (2012).

  • 36.

    Moreno Azócar, D. L. et al. Variation in body size and degree of melanism within a lizards clade: is it driven by latitudinal and climatic gradients? J. Zool. 295, 243–253 (2014).

    Article  Google Scholar 

  • 37.

    Pearson, O. P. The effect of substrate and of skin color on thermoregulation of a lizard. Comp. Biochem. Physiol. Part A Physiol. 58, 353–358 (1977).

    Article  Google Scholar 

  • 38.

    Hutchinson, V. H. & Larimer, J. L. Reflectivity of the integuments of some lizards from different habitats. Ecology 41, 199–209 (1960).

    Article  Google Scholar 

  • 39.

    Norris, K. S. in Lizard Ecology: A Symposium (ed. W. W. Milstead) 162–229 (University of Missouri Press, 1967).

  • 40.

    Barry, R. G., & Chorley, R. J. Atmosphere, Weather and Climate (Routledge, 2003).

  • 41.

    Olalla‐Tarraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16, 606–617 (2007).

    Article  Google Scholar 

  • 42.

    Uetz, P., Freed, P. & Hošek, J. (eds.). The Reptile Database. http://www.reptile-database.org (2020).

  • 43.

    Ohta, Y. I., Kanade, T. & Sakai, T. Color information for region segmentation. Comput. Graph. Image Process. 13, 222–241 (1980).

    Article  Google Scholar 

  • 44.

    Gueymard, C. A., Myers, D. & Emery, K. Proposed reference irradiance spectra for solar energy systems testing. Sol. Energy 73, 443–467 (2002).

    Article  Google Scholar 

  • 45.

    Shawkey, M. D. et al. Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae). Sci. Nat. (Naturwissenschaften) 104, 78 (2017).

    Article  CAS  Google Scholar 

  • 46.

    Shine, R. & Kearney, M. Field studies of reptile thermoregulation: how well do physical models predict operative temperatures? Funct. Ecol. 15, 282–288 (2001).

    Article  Google Scholar 

  • 47.

    Reguera, S., Zamora-Camacho, F. J. & Moreno-Rueda, G. The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol. J. Linn. Soc. 112, 132–141 (2014).

    Article  Google Scholar 

  • 48.

    Martínez-Freiría, F., Toyama, K. S., Freitas, I. & Kaliontzopoulou, A. Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Sci. Rep. 10, 1–10 (2020).

    Article  CAS  Google Scholar 

  • 49.

    Pizzigalli, C. et al. Eco-geographical determinants of ornamentation in vipers. Biol. J. Linnean Soc. 130, 1–14 (2020).

  • 50.

    Kurschner, W. M., Kvacek, Z. & Dilcher, D. L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl Acad. Sci. USA 105, 449–453 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Schraft, H. A., Goodman, C. & Clark, R. W. Do free-ranging rattlesnakes use thermal cues to evaluate prey? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 204, 295–303 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Alencar, L. R. V. et al. Diversification in vipers: phylogenetic relationships, time of divergence and shifts in speciation rates. Mol. Phylogenet. Evol. 105, 50–62 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513, 401–404 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Pokorny, L. et al. Living on the edge: timing of Rand Flora disjunctions congruent with ongoing aridification in Africa. Front. Genet. 6, 154 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Barlow, A. et al. Ancient habitat shifts and organismal diversification are decoupled in the African viper genus Bitis (Serpentes: Viperidae). J. Biogeogr. 46, 1234–1248 (2019).

    Article  Google Scholar 

  • 56.

    Senut, B., Pickford, M. & Ségalen, L. Neogene desertification of Africa. C. R. Geosci. 341, 591–602 (2009).

    CAS  Article  Google Scholar 

  • 57.

    Douglas, M. E., Douglas, M. R., Schuett, G. W. & Porras, L. W. Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Mol. Ecol. 15, 3353–3374 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Zhisheng, A., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Janis, C. M., Damuth, J. & Theodor, J. M. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 371–398 (2004).

    Article  Google Scholar 

  • 60.

    Walters, K. A., & Roberts, M. S. The structure and function of Skin. https://doi.org/10.1002/yea (2002).

  • 61.

    Wüster, W., Peppin, L., Pook, C. E. & Walker, D. E. A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol. Phylogenet. Evol. 49, 445–459 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Shine, R. & Li-Xin, S. Arboreal ambush site selection by pit-vipers Gloydius shedaoensis. Anim. Behav. 63, 565–576 (2002).

    Article  Google Scholar 

  • 63.

    Ursenbacher, S. et al. Postglacial recolonization in a cold climate specialist in western europe: patterns of genetic diversity in the adder (Vipera berus) support the central-marginal hypothesis. Mol. Ecol. 24, 3639–3651 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Blumthaler, M., Ambach, W. & Ellinger, R. Increase in solar UV radiation with altitude. J. Photochem. Photobiol. B Biol. 39, 130–134 (1997).

    CAS  Article  Google Scholar 

  • 65.

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Körner, C. et al. in Ecosystems and Human Well-being, Chapter 24, vol. 1. (Island Press, 2005).

  • 67.

    Tuniyev, B. et al. Gloydius halys. The IUCN Red List of Threatened Species 2009: e.T157282A5069394. https://www.iucnredlist.org/species/157282/5069394 (2009).

  • 68.

    Salter, C., Hobbs, J., Wheeler, J., Kostbade, J. T. Essentials of World Regional Geography 2nd edn. (Harcourt Brace, New York, 2005) pp. 464–465.

  • 69.

    Couplan, F., & Ligeon, J. C. Fleurs des Alpes: balade d’un botaniste, des plaines aux sommets (Nathan, 2005).

  • 70.

    Solórzano, A., Porras, L. W., Chaves, G., Bonilla, F. & Batista, A. Atropoides picadoi. The IUCN Red List of Threatened Species 2014: e.T203657A2769424. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T203657A2769424.en. (2014).

  • 71.

    Canseco-Márquez, L. & Muñoz-Alonso, A. Bothriechis rowleyi. The IUCN Red List of Threatened Species 2007: e.T64304A12761506. https://doi.org/10.2305/IUCN.UK.2007.RLTS.T64304A12761506.en. (2020).

  • 72.

    Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).

    Article  Google Scholar 

  • 73.

    Hill, N. Description of cranial elements and ontogenetic change within Tropidolaemus wagleri (Serpentes: Crotalinae). PLoS ONE 14, e0206023 (2019).

  • 74.

    Savage, J. M. The Amphibians and Reptiles of Costa Rica: A Herpetofauna between two Continents, between two Seas. (University of Chicago Press, Chicago, 2002).

  • 75.

    Fathinia, B., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Todehdehghan, F. & Amiri, F. Avian deception using an elaborate caudal lure in Pseudocerastes urarachnoides (Serpentes: Viperidae). Amphib. Reptilia 36, 223–231 (2015).

    Article  Google Scholar 

  • 76.

    Menegon, M., Davenport, T. R. & Howell, K. M. Description of a new and critically endangered species of Atheris (Serpentes: Viperidae) from the Southern Highlands of Tanzania, with an overview of the country’s tree viper fauna. Zootaxa 3120, 43–54 (2011).

    Article  Google Scholar 

  • 77.

    Goldenberg, J., D’Alba, L. Bisschop, K., Vanthournout, B., Shawkey, M. “Replication Data for: Substrate thermal properties influence ventral brightness evolution in ectotherms”; MacroBright v.0.1, https://doi.org/10.34894/FZ66NU, DataverseNL, V2. (2020).

  • 78.

    R-Core-Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019)

  • 79.

    Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 15, 2216–2218 (2014).

    Article  CAS  Google Scholar 

  • 80.

    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evolution 3, 217–223 (2012).

    Article  Google Scholar 

  • 81.

    Stayton, C. T. convevol: Analysis of Convergent Evolution. R package version 1.3. https://CRAN.R-project.org/package=convevol (2018).

  • 82.

    Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  • 84.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.15. https://CRAN.R-project.org/package=MuMIn (2019).

  • 85.

    Marchetti, M. P., Light, T., Moyle, P. B. & Viers, J. H. Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecol. Appl. 14, 1507–1525 (2004).

    Article  Google Scholar 

  • 86.

    Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 1–9 (2017).

    Article  CAS  Google Scholar 

  • 87.

    Hadfield, J. MCMC Course Notes. https://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf (2018).

  • 88.

    Gelman, A. & Rubin, B. D. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).

    Article  Google Scholar 

  • 89.

    Porter, W. P., Mitchell, J. W., Beckman, W. A. & DeWitt, C. B. Behavioral implications of mechanistic ecology – Thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13, 1–54 (1973).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Orlov, N. L., Sundukov, Y. N. & Kropachev, I. I. Distribution of pitvipers of “Gloydius blomhoffii” complex in Russia with the first records of Gloydius blomhoffii blomhoffii at Kunashir island (Kuril archipelago, Russian far east). Russ. J. Herpetol. 21, 169–178 (2014).


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress