in

Success of coastal wetlands restoration is driven by sediment availability

  • 1.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  • 2.

    Costanza, R. et al. Changes in the global value of ecosystem services.Glob. Environ. Chang. 26, 152–158 (2014).

    Article  Google Scholar 

  • 3.

    Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. Annu. Rev. 45, 345–405 (2007).

    Google Scholar 

  • 4.

    Kainuma, Mami et al. Current status of mangroves worldwide. Middle East 624, 0–4 (2013).

    Google Scholar 

  • 5.

    Fagherazzi, S. et al. Sea level rise and the dynamics of the marsh-upland boundary. Front. Environ. Sci. 7, 25 (2019).

    Article  Google Scholar 

  • 6.

    Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

    Article  Google Scholar 

  • 7.

    Craft, C. et al. Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).

    Article  Google Scholar 

  • 8.

    Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).

    CAS  Article  Google Scholar 

  • 9.

    Schuerch, M. et al. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. Earth Surf. 118, 84–96 (2013).

    Article  Google Scholar 

  • 10.

    Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    CAS  Article  Google Scholar 

  • 11.

    Syvitski, J. P. et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    CAS  Article  Google Scholar 

  • 12.

    Ezcurra, E. et al. A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers.Sci. Adv. 5, eaau9875 (2019).

    CAS  Article  Google Scholar 

  • 13.

    Kirwan, M. L. et al. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).

    Article  Google Scholar 

  • 14.

    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Ma, Z. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).

    CAS  Article  Google Scholar 

  • 16.

    Gittman, R. K., Scyphers, S. B., Smith, C. S., Neylan, I. P. & Grabowski, J. H. Ecological consequences of shoreline hardening: a meta-analysis. BioScience 66, 763–773 (2016).

    Article  Google Scholar 

  • 17.

    Smith, C. S. et al. Hurricane damage along natural and hardened estuarine shorelines: Using homeowner experiences to promote nature-based coastal protection. Mar. Policy 81, 350–358 (2017).

    Article  Google Scholar 

  • 18.

    Shepard, C. C., Crain, C. M. & Beck, M. W. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS ONE 6, e27374 (2011).

    CAS  Article  Google Scholar 

  • 19.

    Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change 106, 7–29 (2011).

    Article  Google Scholar 

  • 20.

    Leonardi, N., Ganju, N. K. & Fagherazzi, S. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc. Nat. Acad. Sci. USA 113, 64–68 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Barbier, E. B. et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319, 321–323 (2008).

    CAS  Article  Google Scholar 

  • 22.

    Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. Nature-based Solutions to Address Global Societal Challenges (IUCN, 2016).

  • 23.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Article  Google Scholar 

  • 24.

    Seddon, N. et al. Global recognition of the importance of Nature-based Solutions to the impacts of climate change. Glob. Sustain. 3, 1–12 (2020).

    Article  Google Scholar 

  • 25.

    Bilkovic, D. M. et al. Living Shorelines: The Science and Management of Nature-Based Coastal Protection (CRC Press, 2017).

  • 26.

    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Article  Google Scholar 

  • 27.

    Liu, Z., Cui, B. & He, Q. Shifting paradigms in coastal restoration: Six decades’ lessons from China. Sci. Total Environ. 566, 205–214 (2016).

    Article  CAS  Google Scholar 

  • 28.

    Turner, R. K., Burgess, D., Hadley, D., Coombes, E. & Jackson, N. A cost–benefit appraisal of coastal managed realignment policy.Glob. Environ. Chang. 17, 397–407 (2007).

    Article  Google Scholar 

  • 29.

    Donatelli, C., Ganju, N. K., Zhang, X., Fagherazzi, S. & Leonardi, N. Salt marsh loss affects tides and the sediment budget in shallow bays. J. Geophys. Res. Earth Surf. 123, 2647–2662 (2018).

    Article  Google Scholar 

  • 30.

    Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).

    CAS  Article  Google Scholar 

  • 31.

    Friess, D. A. et al. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol. Rev. 87, 346–366 (2012).

    Article  Google Scholar 

  • 32.

    Webb, E. L. et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Clim. Change 3, 458–465 (2013).

    Article  Google Scholar 

  • 33.

    Hu, Z. et al. Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary. Ecol. Eng. 83, 354–363 (2015).

    Article  Google Scholar 

  • 34.

    Phillips, D. H. et al. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka. Wetlands 37, 471–483 (2017).

    Article  Google Scholar 

  • 35.

    Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).

    Article  Google Scholar 

  • 36.

    Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. Wetland sedimentation from hurricanes Katrina and Rita. Science 314, 449–452 (2006).

    CAS  Article  Google Scholar 

  • 37.

    French, C. E., French, J. R., Clifford, N. J. & Watson, C. J. Sedimentation-erosion dynamics of abandoned reclamations: the role of waves and tides. Cont. Shelf Res. 20, 1711–1733 (2000).

    Article  Google Scholar 

  • 38.

    Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).

    CAS  Article  Google Scholar 

  • 39.

    Cahoon, D. R. A review of major storm impacts on coastal wetland elevations. Estuar. Coast. 29, 889–898 (2006).

    Article  Google Scholar 

  • 40.

    Howe, A. J., Rodriguez, J. F. & Saco, P. M. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar. Coast. Shelf Sci. 84, 75–83 (2009).

    CAS  Article  Google Scholar 

  • 41.

    Krauss, K. W. et al. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Sci. Rep. 7, 1–11 (2017).

    Article  CAS  Google Scholar 

  • 42.

    Carey, J. C., Moran, S. B., Kelly, R. P., Kolker, A. S. & Fulweiler, R. W. The declining role of organic matter in New England salt marshes. Estuar. Coast 40, 626–639 (2017).

    CAS  Article  Google Scholar 

  • 43.

    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

    CAS  Article  Google Scholar 

  • 44.

    Anisfeld, S. C., Hill, T. D. & Cahoon, D. R. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuar. Coast. Shelf Sci. 170, 145–154 (2016).

    Article  Google Scholar 

  • 45.

    Baustian, J. J., Mendelssohn, I. A. & Hester, M. W. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Chang. Biol. 18, 3377–3382 (2012).

    Article  Google Scholar 

  • 46.

    Cahoon, D. R., French, J. R., Spencer, T., Reed, D. & Möller, I. Vertical accretion versus elevational adjustment in UK saltmarshes: an evaluation of alternative methodologies. Geol. Soc. Lond. Spec. Publ. 175, 223–238 (2000).

    Article  Google Scholar 

  • 47.

    Spencer, T. et al. Surface elevation change in natural and re-created intertidal habitats, eastern England, UK, with particular reference to Freiston Shore. Wetl. Ecol. Manag. 20, 9–33 (2012).

    Article  Google Scholar 

  • 48.

    Craft, C. et al. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecol. Appl. 13, 1417–1432 (2003).

    Article  Google Scholar 

  • 49.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Fagherazzi, S. et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).

    Article  Google Scholar 

  • 51.

    Smith, C. S., Puckett, B., Gittman, R. K. & Peterson, C. H. Living shorelines enhanced the resilience of saltmarshes to Hurricane Matthew. Ecol. Appl. 28, 871–877 (2018).

    Article  Google Scholar 

  • 52.

    Oosterlee, L. et al. Tidal marsh restoration design affects feedbacks between inundation and elevation change. Estuar. Coast. 41, 613–625 (2018).

    Article  Google Scholar 

  • 53.

    Ganju, N. K. Marshes are the new beaches: integrating sediment transport into restoration planning. Estuar. Coast. 42, 917–926 (2019).

    CAS  Article  Google Scholar 

  • 54.

    Ford, M. A., Cahoon, D. R. & Lynch, J. C. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecol. Eng. 12, 189–205 (1999).

    Article  Google Scholar 

  • 55.

    Temmerman, S., Govers, G., Wartel, S. & Meire, P. Spatial and temporal factors controlling short‐term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surf. Processes Landforms 28, 739–755 (2003).

    Article  Google Scholar 

  • 56.

    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).

    Article  Google Scholar 

  • 57.

    Mudd, S. M., D’Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. Earth Surf. 115, F03029 (2010).

    Google Scholar 

  • 58.

    Fricke, A. T., Nittrouer, C. A., Ogston, A. S. & Vo-Luong, H. P. Asymmetric progradation of a coastal mangrove forest controlled by combined fluvial and marine influence, Cù Lao Dung, Vietnam. Cont. Shelf Res. 147, 78–90 (2017).

    Article  Google Scholar 

  • 59.

    Möller, I., Spencer, T., French, J. R., Leggett, D. J. & Dixon, M. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuar. Coast. Shelf Sci. 49, 411–426 (1999).

    Article  Google Scholar 

  • 60.

    Jadhav, R. S., Chen, Q. & Smith, J. M. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coast. Eng. 77, 99–107 (2013).

    Article  Google Scholar 

  • 61.

    Kirwan, M. L. & Guntenspergen, G. R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. Earth Surf. 115, F02009 (2010).

    Article  Google Scholar 

  • 62.

    Ganju, N. K., Nidzieko, N. J. & Kirwan, M. L. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model. J. Geophys. Res. Earth Surf. 118, 2045–2058 (2013).

    Article  Google Scholar 

  • 63.

    Zhang, X. et al. Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing. Remote Sens. Environ. 240, 111682 (2020).

    Article  Google Scholar 

  • 64.

    Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeo. 123, 2444–2465 (2018).

    CAS  Article  Google Scholar 

  • 65.

    Castagno, K. A. et al. Intense storms increase the stability of tidal bays. Geophys. Res. Lett. 45, 5491–5500 (2018).

    Article  Google Scholar 

  • 66.

    Walling, D. E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges (UNESCO, 2009).

  • 67.

    Yu, Y. et al. New discharge regime of the Huanghe (Yellow River): causes and implications. Cont. Shelf Res. 69, 62–72 (2013).

    Article  Google Scholar 

  • 68.

    Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).

    CAS  Article  Google Scholar 

  • 69.

    Donatelli, C., Kalra, T. S., Fagherazzi, S., Zhang, X. & Leonardi, N. Dynamics of marsh‐derived sediments in lagoon‐type estuaries. J. Geophys. Res. Earth Surf. 125, e2020JF005751 (2020).

    Article  Google Scholar 

  • 70.

    Peteet, D. M. et al. Sediment starvation destroys New York City marshes’ resistance to sea level rise. Proc. Nat. Acad. Sci. USA 115, 10281–10286 (2018).

    CAS  Article  Google Scholar 

  • 71.

    Reed, D. J. Understanding tidal marsh sedimentation in the Sacramento-San Joaquin Delta, California. J. Coastal Res. 36, 605–611 (2002).

    Article  Google Scholar 

  • 72.

    Cahoon, D. R., Lynch, J. C., Roman, C. T., Schmit, J. P. & Skidds, D. E. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuar. Coast. 42, 1–15 (2019).

    CAS  Article  Google Scholar 

  • 73.

    Kondolf, G. M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

    Article  Google Scholar 

  • 74.

    Reed, D. J. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter storms. Estuaries 12, 222–227 (1989).

    Article  Google Scholar 

  • 75.

    Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).

    CAS  Article  Google Scholar 

  • 76.

    Vörösmarty, C. J. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).

    Article  Google Scholar 

  • 77.

    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, Ltd., 2009).


  • Source: Ecology - nature.com

    Keeping an eye on the fusion future

    Improving sanitation for the world’s most vulnerable people