in

Superior predatory ability and abundance predicts potential ecological impact towards early-stage anurans by invasive ‘Killer Shrimp’ (Dikerogammarus villosus)

  • 1.

    Hoffmann, B. D. & Broadhurst, L. M. The economic cost of managing invasive species in Australia. NeoBiota 31, 1–18 (2016).

    Article  Google Scholar 

  • 2.

    Dueñas, M. A. et al. The role played by invasive species in interactions with endangered and threatened species in the United States: a systematic review. Biodivers. Conserv. 27, 3171–3183 (2018).

    Article  Google Scholar 

  • 3.

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Ricciardi, A. & MacIsaac, H. J. Impacts of biological invasions on freshwater ecosystems. Fifty Years Invas. Ecol. Legacy Charles Elton https://doi.org/10.1002/9781444329988.ch16 (2010).

    Article  Google Scholar 

  • 5.

    Moorhouse, T. P. & Macdonald, D. W. Are invasives worse in freshwater than terrestrial ecosystems?. Wiley Interdiscip. Rev. Water 2, 1–8 (2015).

    Article  Google Scholar 

  • 6.

    Rosewarne, P. J. et al. Feeding behaviour, predatory functional responses and trophic interactions of the invasive Chinese mitten crab (Eriocheir sinensis) and signal crayfish (Pacifastacus leniusculus). Freshw. Biol. 61, 426–443 (2016).

    Article  Google Scholar 

  • 7.

    Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).

    Article  Google Scholar 

  • 8.

    Dick, J. T. A. et al. Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).

    Article  Google Scholar 

  • 9.

    Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The Functional Response Ratio (FRR): advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).

    Article  Google Scholar 

  • 10.

    Devin, S., Piscart, C., Beisel, J. N. & Moreteau, J. C. Life History Traits of the Invader Dikerogammarus villosus (Crustacea: Amphipoda) in the Moselle River. France. Int. Rev. Hydrobiol. 89, 21–34 (2004).

    ADS  Article  Google Scholar 

  • 11.

    Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. & Vilà, M. More than “100 worst” alien species in Europe. Biol. Invasions 20, 1611–1621 (2018).

    Article  Google Scholar 

  • 12.

    Gallardo, B. & Aldridge, D. C. Is Great Britain heading for a Ponto-Caspian invasional meltdown?. J. Appl. Ecol. 52, 41–49 (2015).

    Article  Google Scholar 

  • 13.

    Kramer, A. M. et al. Suitability of Laurentian Great Lakes for invasive species based on global species distribution models and local habitat. Ecosphere 8, e01883 (2017).

    Article  Google Scholar 

  • 14.

    Van Riel, M. C. et al. Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus. Hydrobiologia 565, 39–58 (2006).

    Article  Google Scholar 

  • 15.

    MacNeil, C., Boets, P., Lock, K. & Goethals, P. L. M. Potential effects of the invasive ‘killer shrimp’ (Dikerogammarus villosus) on macroinvertebrate assemblages and biomonitoring indices. Freshw. Biol. 58, 171–182 (2013).

    Article  Google Scholar 

  • 16.

    Dodd, J. A. et al. Predicting the ecological impacts of a new freshwater invader: Functional responses and prey selectivity of the ‘killer shrimp’, Dikerogammarus villosus, compared to the native Gammarus pulex. Freshw. Biol. 59, 337–352 (2014).

    Article  Google Scholar 

  • 17.

    Bruijs, M. C. M., Kelleher, B., Van Der Velde, G. & De Vaate, A. B. Oxygen consumption, temperature and salinity tolerance of the invasive amphipod Dikerogammarus villosus: Indicators of further dispersal via ballast water transport. Arch. fur Hydrobiol. 152, 633–646 (2001).

    Article  Google Scholar 

  • 18.

    Pöckl, M. Strategies of a successful new invader in European fresh waters: Fecundity and reproductive potential of the Ponto-Caspian amphipod Dikerogammarus villosus in the Austrian Danube, compared with the indigenous Gammarus fossarum and G. roeseli. Freshw. Biol. 52, 50–63 (2007).

  • 19.

    Rolla, M., Consuegra, S. & de Leaniz, C. G. Predator recognition and anti-predatory behaviour in a recent aquatic invader, the killer shrimp (Dikerogammarus villosus). Aquat. Invasions 15, 482–496 (2020).

    Article  Google Scholar 

  • 20.

    Kobak, J., Rachalewski, M. & Bącela-Spychalska, K. Conquerors or exiles? Impact of interference competition among invasive Ponto-Caspian gammarideans on their dispersal rates. Biol. Invasions 18, 1953–1965 (2016).

    Article  Google Scholar 

  • 21.

    Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader – the case of killer shrimp. Dikerogammarus villosus. Aquat. Invasions 9, 267–288 (2014).

    Article  Google Scholar 

  • 22.

    Hellmann, C. et al. The trophic function of Dikerogammarus villosus (Sowinsky, 1894) in invaded rivers: a case study in the Elbe and Rhine. Aquat. Invasions 10, 385–397 (2015).

    Article  Google Scholar 

  • 23.

    Platvoet, D., Van Der Velde, G., Dick, J. T. A. & Li, S. Flexible omnivory in Dikerogammarus villosus (Sowinsky, 1894) (Amphipoda) – Amphipod Pilot Species Project (AMPIS) Report 5. Crustaceana 82, 703–720 (2009).

    Article  Google Scholar 

  • 24.

    Taylor, N. G. & Dunn, A. M. Size matters: predation of fish eggs and larvae by native and invasive amphipods. Biol. Invasions 19, 89–107 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Alford, R. A. Ecology: Bleak future for amphibians. Nature 480, 461–462 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Alroy, J. Current extinction rates of reptiles and amphibians. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1508681112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    González-del-Pliego, P. et al. Phylogenetic and Trait-Based Prediction of Extinction Risk for Data-Deficient Amphibians. Curr. Biol. 29, 1557–1563.e3 (2019)

  • 28.

    Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Hayes, T. B., Falso, P., Gallipeau, S. & Stice, M. The cause of global amphibian declines: a developmental endocrinologist’s perspective. J. Exp. Biol. 213, 921–933 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.2454 (2016).

    Article  Google Scholar 

  • 31.

    IUCN. The IUCN Red List of Threatened Species. (2020).

  • 32.

    Nunes, A. L. et al. A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2528 (2019).

    Article  Google Scholar 

  • 33.

    Ilhéu, M., Bernardo, J. & Fernandes, S. Biological invaders in inland waters: Profiles, distribution, and threats. Biol. invaders Inl. waters profiles, Distrib. Threat. 2, 543–558 (2007).

  • 34.

    Kats, L. B. & Ferrer, R. P. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).

    Article  Google Scholar 

  • 35.

    Beebee, T. J. C. & Griffiths, R. A. The amphibian decline crisis: A watershed for conservation biology?. Biol. Conserv. 125, 271–285 (2005).

    Article  Google Scholar 

  • 36.

    National Biodiversity Network. NBN Atlas. Nbn (2017).

  • 37.

    Uehlinger, U., Wantzen, K. M., Leuven, R. S. E. W. & Arndt, H. The Rhine River Basin. in Rivers of Europe 199–245 (2009). https://doi.org/10.1016/B978-0-12-369449-2.00006-0

  • 38.

    Koester, M., Bayer, B. & Gergs, R. Is Dikerogammarus villosus (Crustacea, Gammaridae) a ‘killer shrimp’ in the River Rhine system?. Hydrobiologia 768, 299–313 (2016).

    Article  Google Scholar 

  • 39.

    Gergs, R. & Rothhaupt, K. O. Invasive species as driving factors for the structure of benthic communities in Lake Constance. Germany. Hydrobiologia 746, 245–254 (2014).

    Article  CAS  Google Scholar 

  • 40.

    Haubrock, P. J. et al. Shared histories of co-evolution may affect trophic interactions in a freshwater community dominated by alien species. Frontiers in Ecology and Evolution 7, 355 (2019).

    Article  Google Scholar 

  • 41.

    Marguillier, S. Stable isotope ratios and food web structure of aquatic ecosystems. (1998).

  • 42.

    Dick, J. T. A. & Platvoet, D. Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc. R. Soc. B Biol. Sci. 267, 977–983 (2000).

    CAS  Article  Google Scholar 

  • 43.

    Bollache, L., Dick, J. T., Farnsworth, K. D. & Montgomery, W. I. Comparison of the functional responses of invasive and native amphipods. Biol Lett 4, 166–169 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    MacNeil, C. et al. The Ponto-Caspian ‘killer shrimp’, Dikerogammarus villosus (Sowinsky, 1894), invades the British Isles. Aquat. Invasions 5, 441–445 (2010).

    Article  Google Scholar 

  • 45.

    Worischka, S. et al. Food consumption of the invasive amphipod Dikerogammarus villosus in field mesocosms and its effects on leaf decomposition and periphyton. Aquat. Invasions 13, 261–275 (2018).

    Article  Google Scholar 

  • 46.

    Jourdan, J. et al. Pronounced species turnover, but no functional equivalence in leaf consumption of invasive amphipods in the river Rhine. Biol. Invasions 18, 763–774 (2016).

    Article  Google Scholar 

  • 47.

    Fries, G. & Der Tesch, F. W. Einfluss der Massenvorkommens von Gammarus tigrinus Sexton auf Fische und niedere Tierwelt in der Weser. Arch. für Fischer Wiss. 16, 133–150 (1965).

    Google Scholar 

  • 48.

    Hudgens, B. & Harbert, M. Amphipod Predation on Northern Red-Legged Frog (Rana Aurora) Embryos. Northwest. Nat. 100, 126 (2019).

    Article  Google Scholar 

  • 49.

    Räsänen, K., Pahkala, M., Laurila, A. & Merilä, J. Does Jelly Envelope Protect the Common Frog Rana Temporaria Embryos From Uv-B Radiation?. Herpetologica 59, 293–300 (2003).

    Article  Google Scholar 

  • 50.

    Ward, D. & Sexton, O. J. Anti-Predator Role of Salamander Egg Membranes. Copeia 1981, 724 (1981).

    Article  Google Scholar 

  • 51.

    Henrikson, B.-I. Predation on amphibian eggs and tadpoles by common predators in acidified lakes. Ecography (Cop.) 13, 201–206 (1990).

    Article  Google Scholar 

  • 52.

    Duellman, W. E. (William E. & Trueb, L. Biology of amphibians. (Johns Hopkins University Press, 1994).

  • 53.

    Latham, D., Jones, E. & Fasham, M. Amphibians. in Handbook of Biodiversity Methods: Survey, Evaluation and Monitoring (eds. Hill, D., Fasham, M., Tucker, G., Shewry, M. & Shaw, P.) (Cambridge University Press, 2005).

  • 54.

    Tinsley, R. C., Stott, L. C., Viney, M. E., Mable, B. K. & Tinsley, M. C. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events. Biol. Invasions 17, 3183–3195 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B Biol. Sci. 367, 2923–2934 (2012).

  • 56.

    Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 58.

    Mayer, G., Waloszek, D., Maier, G. & Maas, A. Mouthparts of the Ponto-Caspian Invader Dikerogammarus Villosus (Amphipoda: Pontogammaridae). J. Crustac. Biol. 28, 1–15 (2008).

    Article  Google Scholar 

  • 59.

    Vucic-Pestic, O., Rall, B. C., Kalinkat, G. & Brose, U. Allometric functional response model: Body masses constrain interaction strengths. J. Anim. Ecol. 79, 249–256 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Maazouzi, C., Piscart, C., Legier, F. & Hervant, F. Ecophysiological responses to temperature of the ‘killer shrimp’ Dikerogammarus villosus: Is the invader really stronger than the native Gammarus pulex? Comp. Biochem. Physiol. – A Mol. Integr. Physiol. 159, 268–274 (2011).

  • 61.

    Álvarez, D. & Nicieza, A. G. Differential success of prey escaping predators: tadpole vulnerability or predator selection??. Copeia 2009, 453–457 (2009).

    Article  Google Scholar 

  • 62.

    Ward, A. & Webster, M. Sociality. in Sociality: The Behaviour of Group-Living Animals 1–8 (Springer International Publishing, 2016).https://doi.org/10.1007/978-3-319-28585-6_1

  • 63.

    Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L. & Kaplan, I. Insect Ecology: Behaviour, Populations and Communities. (Cambridge University Press, 2011).

  • 64.

    Juliano, S. A. Nonlinear Curve Fitting: Predation and Functional Response Curves. in Design and Analysis of Ecological Experiments (eds. Cheiner, S. M. & Gurven, J.) 178–196 (Chapman and Hall, 2001).

  • 65.

    Barrios-O’Neill, D. et al. Fortune favours the bold: A higher predator reduces the impact of a native but not an invasive intermediate predator. J. Anim. Ecol. 83, 693–701 (2014).

  • 66.

    Sentis, A. & Boukal, D. S. On the use of functional responses to quantify emergent multiple predator effects. Sci. Rep. 8, (2018).

  • 67.

    Médoc, V., Albert, H. & Spataro, T. Functional response comparisons among freshwater amphipods: ratio-dependence and higher predation for Gammarus pulex compared to the non-natives Dikerogammarus villosus and Echinogammarus berilloni. Biol. Invasions 17, 3625–3637 (2015).

    Article  Google Scholar 

  • 68.

    Laverty, C., Nentwig, W., Dick, J. & Lucy, F. Alien aquatics in Europe: assessing the relative environmental and socio-economic impacts of invasive aquatic macroinvertebrates and other taxa. Manag. Biol. Invasions 6, 341–350 (2015).

    Article  Google Scholar 

  • 69.

    Dickey, J. W. E. et al. On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota 55, 27–60 (2020).

    Article  Google Scholar 

  • 70.

    Gallardo, B., Errea, M. P. & Aldridge, D. C. Application of bioclimatic models coupled with network analysis for risk assessment of the killer shrimp, Dikerogammarus villosus. Great Britain. Biol. Invasions 14, 1265–1278 (2012).

    Article  Google Scholar 

  • 71.

    Gallardo, B. & Aldridge, D. C. Priority setting for invasive species management by the water industry. Water Res. 178, 115771 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 72.

    Gosner, K. L. A simplified table for staging anuran embryos larvae. Herpetodologists’ Leag. 16, 183–190 (1960).

    Google Scholar 

  • 73.

    Currie, S. P., Combes, D., Scott, N. W., Simmers, J. & Sillar, K. T. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles. J. Neurophysiol. 115, 1446–1457 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Müller, J. C., Schramm, S. & Seitz, A. Genetic and morphological differentiation of Dikerogammarus invaders and their invasion history in Central Europe. Freshw. Biol. 47, 2039–2048 (2002).

    Article  Google Scholar 

  • 75.

    Blackman, R. C. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples – first record of gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).

    Article  Google Scholar 

  • 76.

    van der Velde, G. et al. Environmental and morphological factors influencing predatory behaviour by invasive non-indigenous gammaridean species. Biol. Invasions 11, 2043–2054 (2009).

    Article  Google Scholar 

  • 77.

    Dick, J. T. A. et al. Parasitism may enhance rather than reduce the predatory impact of an invader. Biol. Lett. 6, 636–638 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Iltis, C., Spataro, T., Wattier, R. & Médoc, V. Parasitism may alter functional response comparisons: a case study on the killer shrimp Dikerogammarus villosus and two non-invasive gammarids. Biol. Invasions 20, (2018).

  • 79.

    Welton, J. S. Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshw. Biol. 9, 263–275 (1979).

    Article  Google Scholar 

  • 80.

    Oertli, B. Leaf litter processing and energy flow through macroinvertebrates in a woodland pond (Switzerland). Oecologia 96, 466–477 (1993).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Lods-Crozet, B. & Reymond, O. Bathymetric expansion of an invasive gammarid (Dikerogammarus villosus, Crustacea, Amphipoda) in Lake Léman. J. Limnol. 65, 141–144 (2006).

    Article  Google Scholar 

  • 82.

    Harkness, J. B. The relationships between stressors, macroinvertebrate community structure and leaf processing in stream ecosystems. (University of Sheffield, 2008).

  • 83.

    Leberfinger, K. & Herrmann, J. Secondary production of invertebrate shredders in open-canopy, intermittent streams on the island of land, southeastern Sweden. J. North Am. Benthol. Soc. 29, 934–944 (2010).

    Article  Google Scholar 

  • 84.

    Lods-Crozet, B. Long-term biomonitoring of invertebrate neozoans in Lake Geneva. Arch. des Sci. 67, 101–108 (2014).

    Google Scholar 

  • 85.

    Johns, T., Smith, D. C., Homann, S. & England, J. A. Time-series analysis of a native and a non-native amphipod shrimp in two English rivers. BioInvasions Rec. 7, 101–110 (2018).

    Article  Google Scholar 

  • 86.

    Clinton, K. E., Mathers, K. L., Constable, D., Gerrard, C. & Wood, P. J. Substrate preferences of coexisting invasive amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, under field and laboratory conditions. Biol. Invasions 20, 2187–2196 (2018).

    Article  Google Scholar 

  • 87.

    Haas, G., Brunke, M. & Streit, B. Fast Turnover in Dominance of Exotic Species in the Rhine River Determines Biodiversity and Ecosystem Function: An Affair Between Amphipods and Mussels. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management 426–432 (2002). doi:https://doi.org/10.1007/978-94-015-9956-6_42

  • 88.

    Krisp, H. & Maier, G. Consumption of macroinvertebrates by invasive and native gammarids: A comparison. J. Limnol. 64, 55–59 (2005).

    Article  Google Scholar 

  • 89.

    Mulattieri, P. Etude de l’impact des aménagements riverains sur les macroinvertébrés benthiques des rives genevoises du Léman. (Université de Genève, 2006).

  • 90.

    Platvoet, D., Dick, J. T. A., MacNeil, C., van Riel, M. C. & van der Velde, G. Invader-invader interactions in relation to environmental heterogeneity leads to zonation of two invasive amphipods, dikerogammarus villosus (sowinsky) and gammarus tigrinus sexton: Amphipod pilot species project (ampis) report 6. Biol. Invasions 11, 2085–2093 (2009).

    Article  Google Scholar 

  • 91.

    Tricarico, E. et al. The killer shrimp, Dikerogammarus villosus (Sowinsky, 1894), is spreading in Italy. Aquat. Invasions 5, 211–214 (2010).

    Article  Google Scholar 

  • 92.

    Muskó, I. B., Balogh, C., Tóth, Á. P., Varga, É. & Lakatos, G. Differential response of invasive malacostracan species to lake level fluctuations. Hydrobiologia 590, 65–74 (2007).

    Article  Google Scholar 

  • 93.

    Hellmann, C., Schöll, F., Worischka, S., Becker, J. & Winkelmann, C. River-specific effects of the invasive amphipod Dikerogammarus villosus (Crustacea: Amphipoda) on benthic communities. Biol. Invasions 19, 381–398 (2017).

    Article  Google Scholar 

  • 94.

    GBIF.org. Global Biodiversity Information Facility. Choice Reviews Online 41, 41–5289–41–5289 (2004).

  • 95.

    INaturalist.org. iNaturalist. (2020). Available at: https://www.inaturalist.org/. (Accessed: 16th October 2020)

  • 96.

    R Core Team. R: A Language and Environment for Statistical Computing. (2018).

  • 97.

    Pritchard, D. W., Paterson, R. A., Bovy, H. C. & Barrios-O’Neill, D. frair: an R package for fitting and comparing consumer functional responses. Methods Ecol. Evol. 8, 1528–1534 (2017).

  • 98.

    Rogers, D. Random Search and Insect Population Models. J. Anim. Ecol. 41, 369 (1972).

    Article  Google Scholar 

  • 99.

    Bolker, B. & R Core Team. bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.20. (2017).

  • 100.

    Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).

    Article  Google Scholar 

  • 101.

    Cuthbert, R. N., Dick, J. T. A., Callaghan, A. & Dickey, J. W. E. Biological control agent selection under environmental change using functional responses, abundances and fecundities; the Relative Control Potential (RCP) metric. Biol. Control 121, 50–57 (2018).

    Article  Google Scholar 

  • 102.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical Journal 50, 346–363 (2008).

    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    An aggressive market-driven model for US fusion power development

    King Climate Action Initiative announces new research to test and scale climate solutions