in

Surface slicks are pelagic nurseries for diverse ocean fauna

  • 1.

    Leis, J. M. & McCormick, M. I. The biology, behavior, and ecology of the pelagic, larval stage of coral reef fishes. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 171–199 (Academic Press, Cambridge, 2002).

  • 2.

    Cowen, R. K. Oceanographic influences on larval dispersal and retention and their consequences for population connectivity. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 149–170 (Academic Press, Cambridge, 2002).

  • 3.

    Doherty, P. J. & Fowler, T. An empirical test of recruitment limitation in a coral reef fish. Science 263, 935–939 (1994).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Armsworth, P. R. Recruitment limitation, population regulation, and larval connectivity in reef fish metapopulations. Ecology 83, 1092–1104 (2002).

    Article  Google Scholar 

  • 5.

    Houde, E. D. Patterns and trends in larval-stage growth and mortality of teleost fish. J. Fish Biol. 51, 52–83 (1997).

    ADS  Article  Google Scholar 

  • 6.

    Haury, L. R., McGowan, J. A. & Wiebe, P. H. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities 34, 277–327 (Springer, Boston, 1978).

  • 7.

    Letcher, B. H., Rice, J. A., Crowder, L. B. & Rose, K. A. Variability in survival of larval fish: Disentangling components with a generalized individual-based model. Can. J. Fish. Aquat. Sci. 53, 787–801 (1996).

    Article  Google Scholar 

  • 8.

    Shanks, A. L. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. 13, 311–315 (1983).

    ADS  Article  Google Scholar 

  • 9.

    Pineda, J. Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 52, 427–458 (1994).

    Article  Google Scholar 

  • 10.

    Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).

    ADS  Article  Google Scholar 

  • 11.

    Garland, E. D., Zimmer, C. A. & Lentz, S. J. Larval distributions in inner-shelf waters: The roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol. Oceanogr. 47, 803–817 (2002).

    ADS  Article  Google Scholar 

  • 12.

    Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).

    ADS  Article  Google Scholar 

  • 13.

    Greer, A. T., Cowen, R. K., Guigand, C. M., Hare, J. A. & Tang, D. The role of internal waves in larval fish interactions with potential predators and prey. Prog. Oceanogr. 127, 47–61 (2014).

    ADS  Article  Google Scholar 

  • 14.

    Shulzitski, K. et al. Close encounters with eddies: Oceanographic features increase growth of larval reef fishes during their journey to the reef. Biol. Lett. 11, 20140746 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Shulzitski, K., Sponaugle, S., Hauff, M., Walter, K. D. & Cowen, R. K. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc. Natl. Acad. Sci. U. S. A. 113, 6928–6933 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Woodson, C. B. & Litvin, S. Y. Ocean fronts drive marine fishery production and biogeochemical cycling. Proc. Natl. Acad. Sci. U. S. A. 112, 1710–1715 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Apel, J. R., Byrne, H. M., Proni, J. R. & Charnell, R. L. Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite. J. Geophys. Res. 80, 865–881 (1975).

    ADS  Article  Google Scholar 

  • 18.

    Kingsford, M. J. Linear oceanographic features: A focus for research on recruitment processes. Aust. J. Ecol. 15, 391–401 (1990).

    Article  Google Scholar 

  • 19.

    Klymak, J. M. et al. The direct breaking of internal waves at steep topography. Oceanography 25(2), 150–159 (2012).

    Article  Google Scholar 

  • 20.

    Engel, A. et al. The Ocean’s Vital Skin: Toward an integrated understanding of the sea surface microlayer. Front. Mar. Sci. 4, 269 (2017).

    Article  Google Scholar 

  • 21.

    Jillett, J. B. & Zeldis, J. R. Aerial observations of surface patchiness of a planktonic crustacean. Bull. Mar. Sci. 37, 609–619 (1985).

    Google Scholar 

  • 22.

    Kingsford, M. J. & Choat, J. H. Influence of surface slicks on the distribution and onshore movements of small fish. Mar. Biol. 91, 161–171 (1986).

    Article  Google Scholar 

  • 23.

    Shanks, A. & Wright, W. Internal-wave-mediated shoreward transport of cyprids, megalopae, and gammarids and correlated longshore differences in the settling rate of intertidal barnacles. J. Exp. Mar. Biol. Ecol. 114, 1–13 (1987).

    Article  Google Scholar 

  • 24.

    Shanks, A. L. Further support for the hypothesis that internal waves can cause shoreward transport of larval invertebrates and fish. Fish. Bull. 86, 703–714 (1988).

    Google Scholar 

  • 25.

    Kingsford, M. J., Wolanski, E. & Choat, J. H. Influence of tidally induced fronts and Langmuir circulations on distribution and movements of presettlement fishes around a coral reef. Mar. Biol. 109, 167–180 (1991).

    Article  Google Scholar 

  • 26.

    Weidberg, N., Lobón, C., López, E. & Flórez, L. G. Effect of nearshore surface slicks on meroplankton distribution: role of larval behaviour. Mar. Ecol. 506, 15–30 (2014).

    Article  Google Scholar 

  • 27.

    Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).

    Article  Google Scholar 

  • 28.

    Hughes, B. B., Levey, M. D., Brown, J. A. & Fountain, M. C. Nursery Functions of US West Coast Estuaries: The State of Knowledge for Juveniles of Focal Invertebrate and Fish Species (The Nature Conservancy, Arlington, 2014).

    Google Scholar 

  • 29.

    Sheridan, P. & Hays, C. Are mangroves nursery habitat for transient fishes and decapods?. Wetlands 23, 449–458 (2003).

    Article  Google Scholar 

  • 30.

    Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).

    Article  Google Scholar 

  • 31.

    Logerwell, E. A. & Smith, P. E. Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae. Fish. Oceanogr. 10, 13–25 (2001).

    Article  Google Scholar 

  • 32.

    Govoni, J. J., Hare, J. A., Davenport, E. D., Chen, M. H. & Marancik, K. E. Mesoscale, cyclonic eddies as larval fish habitat along the southeast United States shelf: A Lagrangian description of the zooplankton community. ICES J. Mar. Sci. 67, 403–411 (2010).

    Article  Google Scholar 

  • 33.

    Merrifield, M. A. & Holloway, P. E. Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res. Oceans 107, 5-1-5–12 (2002).

    Google Scholar 

  • 34.

    Gove, J. M., Whitney, J.L. et al. Prey-size plastics are invading larval fish nurseries. Proc. Natl. Acad. Sci. U. S. A. 53, 201907496 (2019).

    Google Scholar 

  • 35.

    Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: Micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).

    Article  Google Scholar 

  • 36.

    Mundy, B. C. Checklist of the fishes of the Hawaiian archipelago. Bishop Mus. Bull. Zool. 6, 1–706 (2005).

    Google Scholar 

  • 37.

    Smith, K., Whitney, J. L., Lecky, J., Gove, J. M., Copeland, A., Kobayashi, D. R. & McManus, M. A. Physical mechanisms driving biological accumulation in surface lines on coastal Hawaiian waters. (in review).

  • 38.

    Cheng, L. Notes on the ecology of the oceanic insect Halobates. Mar. Fish. Rev. 36(2), 1–7 (1974).

  • 39.

    Senta, T., Kimura, M. & Kanbara, T. Predation of fishes on open-ocean species of sea-skaters (Halobates spp.). Jpn. J. Ichthyol. 40, 193–198 (1993).

    Google Scholar 

  • 40.

    West, A. P. Aspects of the Early Life History of Billfish Off Kona, Hawaii. PhD Dissertation 1–202 (University of Technology, Sydney, 2004).

  • 41.

    Gove, J. M., Lecky, J., Walsh, W. J., Ingram, R. J., Leong, K., Polovina, J. J., Maynard, J. A., Whittier, R., Kramer, L., Schemmel, E. M., Hospital, J., Wongbusarakum, S., Conklin, E., Wiggins, C. & Williams, G. J. West Hawai‘i integrated ecosystem assessment ecosystem status report. Pacific Islands Fisheries Science Center, PIFSC Special Publication SP-19-001, 1–46 (2019).

  • 42.

    Friedlander, A.M. Status of Hawaii’s coastal fisheries in the new millennium, Revised 2004 edition, in: 2001 Fisheries Symposium. Presented at the 2001 Fisheries Symposium, American Fisheries Society, Hawaii Chapter (2004).

  • 43.

    Gaffney, R. Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management. Hawaii Department of Land and Natural Resources, Division of Aquatic Resources Technical Report 20–02, 1–42 (2004).

  • 44.

    Boehlert, G. W. & Mundy, B. C. Vertical distribution of larval fishes off Kahe Point, Oahu, a site for potential ocean thermal energy development. Final Report to National Ocean Service, Division of Ocean Minerals and Energy, NOAA 1–76 (1986).

  • 45.

    Boehlert, G. W., Watson, W. & Sun, L. C. Horizontal and vertical distributions of larval fishes around an isolated oceanic island in the tropical Pacific. Deep-Sea Res. Part I 39, 439–466 (1992).

    ADS  Article  Google Scholar 

  • 46.

    Randall, J. E. Reef and Shore Fishes of the Hawaiian Islands (University of Hawaii Press, Honolulu, Hawaii, 2007).

    Google Scholar 

  • 47.

    Hobson, E. S. Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. In The Ecology of Fishes on Coral Reefs (ed. Sale, P. F.) 69–95 (1991).

  • 48.

    Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, 1–33 (2015).

    Article  Google Scholar 

  • 49.

    Downie, R. A., Babcock, R. C., Thomson, D. P. & Vanderklift, M. A. Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Mar. Ecol. Prog. Ser. 482, 217–225 (2013).

    ADS  Article  Google Scholar 

  • 50.

    Parrish, J. D. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar. Ecol. Prog. Ser. 58, 143–160 (1989).

    ADS  Article  Google Scholar 

  • 51.

    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364, 1189–1192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Grimes, C. B. & Kingsford, M. J. How do riverine plumes of different sizes influence fish larvae: Do they enhance recruitment?. Mar. Freshw. Res. 47, 191–208 (1996).

    Article  Google Scholar 

  • 53.

    Zenitani, H., Kono, N. & Tsukamoto, Y. Relationship between daily survival rates of larval Japanese anchovy (Engraulis japonicus) and concentrations of copepod nauplii in the Seto Inland Sea, Japan. Fish. Oceanogr. 16, 473–478 (2007).

    Article  Google Scholar 

  • 54.

    Hunter, J. R. Feeding ecology and predation of marine fish larvae. In Marine Fish Larvae: Morphology, Ecology, and Relation to Fisheries (ed. Lasker, R.) 34–77 (Washington Sea Grant Program, 1981).

  • 55.

    Samprey, A., McKinnon, A. D., Meekan, M. G. & McCormick, M. I. Glimpse into guts: Overview of the feeding of larvae of tropical shorefishes. Mar. Ecol. Prog. Ser. 339, 1–15 (2007).

  • 56.

    Carassou, L. & Le borgne, R. & Ponton, D. Diet of pre-settlement larvae of coral-reef fishes: Selection of prey types and sizes. J. Fish. Biol. 75, 707–715 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Østergaard, P., Munk, P. & Janekarn, V. Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea. Mar. Biol. 146, 595–606 (2005).

    Article  Google Scholar 

  • 58.

    Yang, J. W. et al. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioninginterplay between nanoflagellates and bacterioplankton. ISME J. 12, 1532–1542 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Greer, A. T. et al. Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. J. Plankton Res. 35, 939–956 (2013).

    Article  Google Scholar 

  • 60.

    Benoit-Bird, K. J. & McManus, M. A. A critical time window for organismal interactions in a pelagic ecosystem. PLoS ONE 9, e97763 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Benoit-Bird, K., Shroyer, E. L. & McManus, M. A. A critical scale in plankton aggregations across coastal ecosystems. Geophys. Res. Lett. 40, 3968–3974 (2013).

    ADS  Article  Google Scholar 

  • 62.

    Sponaugle, S., Llopiz, J. K., Havel, L. N. & Rankin, T. L. Spatial variation in larval growth and gut fullness in a coral reef fish. Mar. Ecol. Prog. Ser. 383, 239–249 (2009).

    ADS  Article  Google Scholar 

  • 63.

    Castro, J., Santiago, J. & Santana-Ortega, A. A general theory on fish aggregation to floating objects: An alternative to the meeting point hypothesis. Rev. Fish. Biol. Fish. 11, 255–277 (2002).

  • 64.

    Kingsford, M. Biotic and abiotic structure in the pelagic environment: Importance to small fishes. Bull. Mar. Sci. 53, 393–415 (1993).

    Google Scholar 

  • 65.

    Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).

    Article  Google Scholar 

  • 66.

    Gregory, M. R. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364, 2013–2025 (2009).

    Article  Google Scholar 

  • 67.

    Carpenter, E. J., Anderson, G. R., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    de Sá, L. C., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).

    Article  CAS  Google Scholar 

  • 69.

    Franks, P. Sink or swim, accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82, 1–12 (1992).

    ADS  Article  Google Scholar 

  • 70.

    Genin, A., Jaffe, J. S., Reef, R., Richter, C. & Franks, P. J. S. Swimming against the flow: A mechanism of zooplankton aggregation. Science 308, 860–862 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 71.

    Young, M. & Adams, N. J. Plastic debris and seabird presence in the Hauraki Gulf, New Zealand. NZ J. Mar. Freshw. Res. 44, 167–175 (2010).

    CAS  Article  Google Scholar 

  • 72.

    Wolanski, E. & Hamner, W. M. Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181 (1988).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Morgan, S. G., Fisher, J. L. & Largier, J. L. Larval retention, entrainment, and accumulation in the lee of a small headland: Recruitment hotspots along windy coasts. Limnol. Oceanogr. 56, 161–178 (2011).

    ADS  Article  Google Scholar 

  • 74.

    Leis, J. M., Siebeck, U. & Dixson, D. L. How Nemo finds home: The neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr. Comp. Biol. 51, 826–843 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Woodson, C. B. et al. Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol. Oceanogr. 57, 582–596 (2012).

    ADS  Article  Google Scholar 

  • 76.

    Woodson, C. B. & McManus, M. A. Foraging behavior can influence dispersal of marine organisms. Limnol. Oceanogr. 52, 2701–2709 (2007).

    ADS  Article  Google Scholar 

  • 77.

    Simpson, S. D., Radford, A. N., Tickle, E. J., Meekan, M. G. & Jeffs, A. G. Adaptive avoidance of reef noise. PLoS ONE 6, e16625 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268 (2006).

    PubMed  Article  Google Scholar 

  • 79.

    Rudershausen, P. J. et al. Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and wahoos from the North Atlantic Ocean and comparisons with other oceans. Trans. Am. Fish. Soc. 139, 1335–1359 (2011).

    Article  Google Scholar 

  • 80.

    Harrison, C. S., Hilsa, T. S. & Seki, M. P. Hawaiian seabird feeding ecology. Wildl. Monogr. 85, 3–71 (1983).

  • 81.

    Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Pikitch, E. K. et al. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 15, 43–64 (2014).

    Article  Google Scholar 

  • 83.

    Greer, A. T. & Woodson, C. B. Application of a predator–prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity. ICES J. Mar. Sci. 73, 1051–1061 (2016).

    Article  Google Scholar 

  • 84.

    Woodson, C. B. The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 10, 421–441 (2018).

    ADS  CAS  Article  Google Scholar 

  • 85.

    Luiz, O. et al. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc. Natl. Acad. Sci. U. S. A. 110, 16498–16502 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Stobutzki, I. C. & Bellwood, D. R. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41 (1997).

    ADS  Article  Google Scholar 

  • 87.

    Jones, G. P. et al. Larval retention and connectivity among populations of corals and reef fishes: History, advances and challenges. Coral Reefs 28, 307–325 (2009).

    ADS  Article  Google Scholar 

  • 88.

    Underwood, J. N. Ecologically relevant dispersal of corals on isolated reefs: Implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fish. 18, 257–276 (1987).

    Article  Google Scholar 

  • 90.

    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Comms. 7, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 91.

    Brown, D. M. & Cheng, L. New net for sampling the ocean surface. Mar. Ecol. Prog. Ser. 5, 225–227 (1981).

    ADS  Article  Google Scholar 

  • 92.

    Isaacs, J. E. & Kidd, L. W. Isaacs-Kidd Midwater Trawl. University of California Scripps Institute of Oceanography Final Report 1, SIO Ref.53-3 (1953).

  • 93.

    Mann, K. H. & Lazier, J. R. N. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. (Wiley-Blackwell, Hoboken, 2006).

  • 94.

    Tejada-Martínez, A. E., Akkerman, I. & Bazilevs, Y. Large-eddy simulation of shallow water langmuir turbulence using isogeometric analysis and the residual-based variational multiscale method. J. Appl. Mech. 79, 1–12 (2011).

    Google Scholar 

  • 95.

    Miller, J. M., Leis, J. M. & Watson, W. An Atlas of Common Nearshore Marine Fish Larvae of the Hawaiian Islands (University of Hawaii Sea Grant College Program, Honolulu, 1979).

    Google Scholar 

  • 96.

    Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W. & Richardson, S. L. Ontogeny and Systematics of Fishes. (American Society of Ichthyologists and Herpetologists Special Publication Number 1, Allen Press, Lawrence, Kansas, 1984).

  • 97.

    Ozawa, T. Studies on the Oceanic Ichthyoplankton in the Western North Pacific (Kyushu University Press, Japan, 1986).

    Google Scholar 

  • 98.

    Moser, H. G. The early stages of fishes in the California current region. Calif. Cooper. Ocean. Fish. Investig. Atlas No. 33, 1–1517 (1996).

  • 99.

    Leis, J. M. & Carson-Ewart, B. M. The Larvae of Indo-Pacific Coastal Fishes: An Identification Guide to Marine Fish Larvae. (Australia Museum, 2006).

  • 100.

    Okiyama, M. An Atlas of the Early Stage Fishes in Japan. vols. 1 & 2, 2nd Ed., 1–1639 (Tokai University Press, Kanagawa, Japan, 2014).

  • 101.

    Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. 51, 57–141 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Kingsford, M. J. & Milicich, M. J. Presettlement phase of Parika scaber (Pisces: Monacanthidae): A temperate reef fish. Mar. Ecol. Prog. Ser. 36, 65–79 (1987).

    ADS  Article  Google Scholar 

  • 103.

    Andersen, N. M. & Cheng, L. The marine insect Halobates (Heteroptera: Gerridae): Biology, adaptations, distribution, and phylogeny. Oceanogr. Mar. Biol. Annu. Rev. 42, 119–180 (2004).

    Google Scholar 

  • 104.

    Froese, R. & Pauly, D. FishBase. www.fishbase.org (2018).

  • 105.

    Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci. 360, 1959–1967 (2005).

    CAS  Article  Google Scholar 

  • 106.

    Noren, F. Small plastic particles in Swedish West Coast waters. N-Research Consultants Report 1–12 (2008).

  • 107.

    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 108.

    Hedges, L. V., Gurevitch, J. & Curtis, P. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  • 109.

    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., OHara, R. B., Simpson, G. L., Solymos, P., Stevens, M. & Wagner, H. vegan: community ecology package. R. package. version 2.2-1. http://CRAN.R-project.org/packagepvegan. (2015). at http://CRAN.R-project.org/packagepvegan.

  • 110.

    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

  • 111.

    Legendre, P. & Legendre, L. Numerical Ecology, Third Edition. (Elsevier, Amsterdam, 2012).

  • 112.

    Harrell, F. E., Jr. Package ‘Hmisc’—Harrell Miscellaneous. 1–363 (http://cran.r-project.org/web/packages/Hmisc, 2012).

  • 113.

    Wei, T. Package ‘corrplot’—Visualization of a correlation matrix v0.60. 1–16 (https://CRAN.R-project.org/package=corrplot, 2012).

  • 114.

    Zeileis, A., Cribari-Neto, F., Gruen, B. & Kosmidis, I. Beta Regression in R. J. Stat. Softw. 34, 1–24 (2010).

    Article  Google Scholar 

  • 115.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2017). https://www.R-project.org/.


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running