in

Testing for phylogenetic signal in claws suggests great influence of ecology on Caribbean intertidal arthropods (Acari, Oribatida)

  • 1.

    Tinius, A. & Russell, A. P. Points on the curve: An analysis of methods for assessing the shape of vertebrate claws. J. Morphol. 278, 150–169 (2017).

    Article  Google Scholar 

  • 2.

    Ribas, S. C. et al. Structure of claws and toes of two tropidurid lizard species of Restinga from Southeastern Brazil: Adaptations to the vertical use of the habitat. Rev. Chilena Hist. Nat. 77, 599 (2004).

    Google Scholar 

  • 3.

    Burnham, D. A., Feduccia, A., Martin, L. D. & Falk, A. R. Tree climbing: A fundamental avian adaptation. J. Syst. Paleontol. 9, 103–107 (2011).

    Article  Google Scholar 

  • 4.

    Crandell, K. E., Herrel, A., Sasa, M., Losos, J. B. & Autumn, K. Stick or grip? Co-evolution of adhesive toepads and claws in Anolis lizards. Zoology 117, 363–369 (2014).

    Article  Google Scholar 

  • 5.

    Zani, P. A. The comparative evolution of lizard claw and toe morphology and clinging performance. J. Evol. Biol. 13, 316–325 (2000).

    Article  Google Scholar 

  • 6.

    Feduccia, A. Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science 259, 790–793 (1993).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Manning, P. L., Payne, D., Pennicott, J., Barrett, P. M. & Ennos, R. A. Dinosaur killer claws or climbing crampons? Biol. Lett. 2, 110–112 (2006).

    Article  Google Scholar 

  • 8.

    Pattrick, J. G., Labonte, D. & Federle, W. Scaling of claw sharpness: mechanical constraints reduce attachment performance in larger insects. J. Exp. Biol. 221, jeb188391 (2018).

    Article  Google Scholar 

  • 9.

    Dai, Z., Gorb, S. N. & Schwarz, U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 205, 2479–2488 (2002).

    PubMed  Google Scholar 

  • 10.

    Heethoff, M. & Koerner, L. Small but powerful: The oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. J. Exp. Biol. 210, 3036–3042 (2007).

    Article  Google Scholar 

  • 11.

    Büscher, T. H. & Gorb, S. N. Complementary effect of attachment devices in stick insects (Phasmatodea). J. Exp. Biol. 222, 209833 (2019).

    Article  Google Scholar 

  • 12.

    Pfingstl, T., Kerschbaumer, M. & Shimano, S. Get a grip-evolution of claw shape in relation to microhabitat use in intertidal arthropods (Acari, Oribatida). PeerJ 8, e8488 (2020).

    Article  Google Scholar 

  • 13.

    Herrel, A. Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): A population-level analysis. Biol. J. Lin. Soc. 74, 305–314 (2001).

    Article  Google Scholar 

  • 14.

    Tulli, M. J., Cruz, F. B., Herrel, A., Vanhooydonck, B. & Abdala, V. The interplay between claw morphology and microhabitat use in neotropical iguanian lizards. Zoology 112, 379–392 (2009).

    CAS  Article  Google Scholar 

  • 15.

    Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).

    CAS  Article  Google Scholar 

  • 16.

    Muñoz-Muñoz, F., Talavera, S. & Pagès, N. Geometric morphometrics of the wing in the subgenus Culicoides (Diptera: Ceratopogonidae): From practical implications to evolutionary interpretations. J. Med. Entomol. 48, 129–139 (2011).

    Article  Google Scholar 

  • 17.

    Khang, T. F., Soo, O. Y. M., Tan, W. B. & Lim, L. H. S. Monogenean anchor morphometry: Systematic value, phylogenetic signal, and evolution. PeerJ 4, e1668 (2016).

    Article  Google Scholar 

  • 18.

    Blomberg, S. P. & Garland, T. Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910 (2002).

    Article  Google Scholar 

  • 19.

    Pfingstl, T., Baumann, J. & Lienhard, A. The Caribbean enigma: the presence of unusual cryptic diversity in intertidal mites (Arachnida, Acari, Oribatida). Organ. Divers. Evol. 19, 609–623 (2019).

    Article  Google Scholar 

  • 20.

    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).

    Article  Google Scholar 

  • 21.

    Caumul, R. & Polly, P. D. Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59, 2460–2472 (2005).

    Article  Google Scholar 

  • 22.

    Klingenberg, C. P. There’s something afoot in the evolution of ontogenies. BMC Evol. Biol. 10, 221 (2010).

    Article  Google Scholar 

  • 23.

    Edwards, E. J. & Donoghue, M. J. Pereskia and the origin of the cactus life-form. Am. Nat. 167, 777–793 (2006).

    Article  Google Scholar 

  • 24.

    Ge, D., Yao, L., Xia, L., Zhang, Z. & Yang, Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib. Zool. 84, 267–284 (2015).

    Article  Google Scholar 

  • 25.

    Pfingstl, T. Habitat use, feeding and reproductive traits of rocky-shore intertidal mites from Bermuda (Oribatida: Fortuyniidae and Selenoribatidae). Acarologia 53, 369–382 (2013).

    Article  Google Scholar 

  • 26.

    Pfingstl, T., Lienhard, A. & Baumann, J. New and cryptic species of intertidal mites (Acari, Oribatida) from the Western Caribbean: An integrative approach. Int. J. Acarology 45, 10–25 (2019).

    Article  Google Scholar 

  • 27.

    Rohlf, F. J. TpsDig2. Version 2.31 (2017).

  • 28.

    Klingenberg, C. P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).

    Article  Google Scholar 

  • 29.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1 (2001).

    Google Scholar 

  • 30.

    Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  • 31.

    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: Ten years of progress following the ‘revolution’. Italian J. Zool. 71, 5–16 (2004).

    Article  Google Scholar 

  • 32.

    Cavalcanti, M. J. Geometric morphometric analysis of head shape variation in four species of hammerhead sharks (Carcharhiniformes: Sphyrnidae). Morphometrics 14, 97 (2004).

    Article  Google Scholar 

  • 33.

    Schäffer, S., Stabentheiner, E., Shimano, S. & Pfingstl, T. Leaving the tropics: The successful colonization of cold temperate regions by Dolicheremaeus dorni (Acari, Oribatida). J. Zool. Syst. Evol. Res. 56, 505–518 (2018).

    Article  Google Scholar 

  • 34.

    Otto, J. C. & Wilson, K. Assessment of the usefulness of ribosomal 18S and mitochondrial COI sequences in Prostigmata phylogeny. Acarology: Proceedings of the 10th International Congress (2001).

  • 35.

    Schäffer, S., Krisper, G., Pfingstl, T. & Sturmbauer, C. Description of Scutovertex pileatus sp. nov. (Acari, Oribatida, Scutoverticidae) and molecular phylogenetic investigation of congeneric species in Austria. Zoologischer Anzeiger 247, 249–258 (2008).

    Article  Google Scholar 

  • 36.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  Article  Google Scholar 

  • 37.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS  Article  Google Scholar 

  • 38.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  Article  Google Scholar 

  • 39.

    Rambaut, A. FigTree: tree figure drawing tool. version 1.3.1. Software available at http://tree.bio.ed.ac.uk/software/figtree/ (2009).

  • 40.

    Rambaut, A. & Drummond, A. Tracer: MCMC trace analysis tool. version 1.6. 0. http://tree.bio.ed.ac.uk/software/tracer/ (2007).

  • 41.

    Adams, D. C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 63, 685–697 (2014).

    Article  Google Scholar 

  • 42.

    Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).

    Article  Google Scholar 

  • 43.

    Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. & Balken E. geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).

  • 44.

    Collyer, M. L. & Adams, D. C. RRPP: Linear model evaluation with randomized residuals in a permutation procedure. https://cran.r-project.org/web/packages/RRPP (2021).

  • 45.

    Collyer, M. L. & Adams, D. C. RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9(2), 1772–1779 (2018).

    Article  Google Scholar 

  • 46.

    Pennell, M. W. et al. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Keeping an eye on the fusion future

    Improving sanitation for the world’s most vulnerable people