in

The morphological and chemical properties of fine roots respond to nitrogen addition in a temperate Schrenk’s spruce (Picea schrenkiana) forest

  • 1.

    Agren, G. I. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst. 39, 153–170 (2008).

    Article  Google Scholar 

  • 2.

    Strand, A. E., Pritchard, S. G., McCormack, M. L., Davis, M. A. & Oren, R. Irreconcilable differences: Fine-root life spans and soil carbon persistence. Science 319, 456–458 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Norby, R. J. & Jackson, R. B. Root dynamics and global change: Seeking an ecosystem perspective. New Phytol. 147, 3–12 (2000).

    CAS  Article  Google Scholar 

  • 4.

    Valliere, J. M. & Allen, E. B. Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks of Artemisia californica seedlings. Plant Soil 403, 277–290 (2016).

    CAS  Article  Google Scholar 

  • 5.

    Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Glob. Change Biol. 24, E416–E431 (2018).

    Article  Google Scholar 

  • 6.

    Vanguelova, E. I. & Pitman, R. M. Nutrient and carbon cycling along nitrogen deposition gradients in broadleaf and conifer forest stands in the east of England. For. Ecol. Manage. 447, 180–194 (2019).

    Article  Google Scholar 

  • 7.

    Wang, L. X., Mou, P. P. & Jones, R. H. Nutrient foraging via physiological and morphological plasticity in three plant species. Can. J. For. Res. 36, 164–173 (2006).

    CAS  Article  Google Scholar 

  • 8.

    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Wang, W. J., Mo, Q. F., Han, X. G., Hui, D. F. & Shen, W. J. Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest. Biol. Fertil. Soils 55, 723–736 (2019).

    CAS  Article  Google Scholar 

  • 10.

    Ostonen, I. et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob. Change Biol. 17, 3620–3632 (2011).

    ADS  Article  Google Scholar 

  • 11.

    Makita, N. et al. Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol. 29, 579–585 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Craine, J. M., Froehle, J., Tilman, G. D., Wedin, D. A. & Chapin, F. S. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285 (2001).

    Article  Google Scholar 

  • 13.

    Liu, R. Q. et al. Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation. Plant Soil 415, 317–330 (2017).

    CAS  Article  Google Scholar 

  • 14.

    Nadelhoffer, K. J. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol. 147, 131–139 (2000).

    CAS  Article  Google Scholar 

  • 15.

    Noguchi, K., Nagakura, J. & Kaneko, S. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization. Front. Plant Sci. 4, 7 (2013).

    Article  Google Scholar 

  • 16.

    Lu, X. K., Mao, Q. G., Gilliam, F. S., Luo, Y. Q. & Mo, J. M. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).

    ADS  Article  Google Scholar 

  • 17.

    Li, W. B. et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biol. Biochem. 82, 112–118 (2015).

    CAS  Article  Google Scholar 

  • 18.

    Comas, L. H. & Eissenstat, D. M. Patterns in root trait variation among 25 co-existing North American forest species. New Phytol. 182, 919–928 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Zhang, X. et al. Effects of long-term nitrogen addition and decreased precipitation on the fine root morphology and anatomy of the main tree species in a temperate forest. For. Ecol. Manag. 455, 117664 (2020). https://doi.org/10.1016/j.foreco.2019.117664.

    Article  Google Scholar 

  • 20.

    Burton, A. J., Pregitzer, K. S. & Hendrick, R. L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125, 389–399 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 21.

    Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).

    Article  Google Scholar 

  • 22.

    Wurzburger, N. & Wright, S. J. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).

    PubMed  Article  Google Scholar 

  • 23.

    Penuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Change Biol. 18, 3–6 (2012).

    ADS  Article  Google Scholar 

  • 24.

    Loewe, A., Einig, W., Shi, L., Dizengremel, P. & Hampp, R. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol. 145, 565–574 (2000).

    CAS  Article  Google Scholar 

  • 25.

    Grechi, I. et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environ. Exp. Bot. 59, 139–149 (2007).

    CAS  Article  Google Scholar 

  • 26.

    Jing, H. et al. Effect of nitrogen addition on the decomposition and release of compounds from fine roots with different diameters: The importance of initial substrate chemistry. Plant Soil 438, 281–296 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Mucha, J. et al. Fine root classification matters: Nutrient levels in different functional categories, orders and diameters of roots in boreal Pinus sylvestris across a latitudinal gradient. Plant Soil 447, 507–520 (2019). https://doi.org/10.1007/s11104-019-04395-1.

    CAS  Article  Google Scholar 

  • 28.

    Aubrey, D. P. & Teskey, R. O. Stored root carbohydrates can maintain root respiration for extended periods. New Phytol. 218, 142–152 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Kou, L. et al. Simulated nitrogen deposition affects stoichiometry of multiple elements in resource-acquiring plant organs in a seasonally dry subtropical forest. Sci. Total Environ. 624, 611–620 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.080.

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    Yan, X. L., Jia, L. M. & Dai, T. F. Fine root morphology and growth in response to nitrogen addition through drip fertigation in a Populus × euramericana “Guariento” plantation over multiple years. Ann. For. Sci. 76 (2019).

  • 31.

    Yan, G. et al. Spatial and temporal effects of nitrogen addition on root morphology and growth in a boreal forest. Geoderma 303, 178–187 (2017).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Lu, X. K. et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proc. Natl. Acad. Sci. USA 115, 5187–5192 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Van der Sande, M. T. et al. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. 32, 461–474 (2018).

    Article  Google Scholar 

  • 34.

    Burton, A. J., Jarvey, J. C., Jarvi, M. P., Zak, D. R. & Pregitzer, K. S. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests. Glob. Change Biol. 18, 258–266 (2012).

    ADS  Article  Google Scholar 

  • 35.

    Eissenstat, D. M. & Yanai, R. D. The ecology of root lifespan. Adv. Ecol. Res. 27, 2–60 (1997).

    Google Scholar 

  • 36.

    Chen, D. M., Lan, Z. C., Hu, S. J. & Bai, Y. F. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs soil acidification. Soil Biol. Biochem. 89, 99–108 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Vanguelova, E. I., Nortcliff, S., Moffat, A. J. & Kennedy, F. Morphology, biomass and nutrient status of fine roots of Scots pine (Pinussylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant Soil 270, 233–247 (2005).

    CAS  Article  Google Scholar 

  • 38.

    Zhang, H., Liu, Y., Zhou, Z. & Zhang, Y. Inorganic nitrogen addition affects soil respiration and belowground organic carbon fraction for a Pinus tabuliformis forest. Forests 10, 369 (2019).

    Article  Google Scholar 

  • 39.

    Lalnunzira, C., Brearley, F. Q. & Tripathi, S. K. Root growth dynamics during recovery of tropical mountain forest in North-east India. J. Mt. Sci. 16, 2335–2347 (2019).

    Article  Google Scholar 

  • 40.

    Kochsiek, A., Tan, S. & Russo, S. E. Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecol. 214, 869–882 (2013).

    Article  Google Scholar 

  • 41.

    Ostonen, I. et al. Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426–442 (2007).

    Article  Google Scholar 

  • 42.

    Fitter, A. H., Stickland, T. R., Harvey, M. L. & Wilson, G. W. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol. 118, 375–382 (1991).

    Article  Google Scholar 

  • 43.

    Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 162, 9–24 (2004).

    Article  Google Scholar 

  • 44.

    Zhou, Y. M., Tang, J. W., Melillo, J. M., Butler, S. & Mohan, J. E. Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiol. 31, 707–717 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 45.

    Fujita, Y., Robroek, B. J. M., de Ruiter, P. C., Heil, G. W. & Wassen, M. J. Increased N affects P uptake of eight grassland species: The role of root surface phosphatase activity. Oikos 119, 1665–1673 (2010).

    CAS  Article  Google Scholar 

  • 46.

    Alvarez-Clare, S. & Mack, M. C. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest?. PLoS ONE 10, e0123796 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Koerselman, W. & Meuleman, A. F. M. The vegetation NP ratio a new tool to detect the nature. J. Appl. Ecol. 33, 1441 (1996).

    Article  Google Scholar 

  • 48.

    Wang, Z. Q. et al. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis. Funct. Ecol. 33, 2081–2094 (2019).

    Article  Google Scholar 

  • 49.

    Desrochers, A., Landhausser, S. M. & Lieffers, V. J. Coarse and fine root respiration in aspen (Populus tremuloides). Tree Physiol. 22, 725–732 (2002).

    PubMed  Article  Google Scholar 

  • 50.

    Son, Y. & Hwang, J. H. Fine root biomass, production and turnover in a fertilized Larix leptolepis plantation in central Korea. Ecol. Res. 18, 339–346 (2003).

    Article  Google Scholar 

  • 51.

    Eissenstat, D. M. & Volder, A. The efficiency of nutrient acquisition over the life of a root, 185–220. In Nutrient Acquisition by Plants: An Ecological Perspective (ed. Barririrad, H.) (Springer, Berlin, Heidelberg, 2005).

    Google Scholar 

  • 52.

    Chen, L., Deng, Q., Yuan, Z., Mu, X. & Kallenbach, R. L. Age-related C:N:P stoichiometry in two plantation forests in the Loess Plateau of China. Ecol. Eng. 120, 14–22 (2018).

    Article  Google Scholar 

  • 53.

    Wapongnungsang, R. H. & Tripathi, S. K. Fine root growth and soil nutrient dynamics during shifting cultivation in tropical semi-evergreen forests of northeast India. J. Environ. Biol. 40, 45–52 (2019).

    CAS  Article  Google Scholar 

  • 54.

    Razaq, M., Salahuddin, Shen, H., Sher, H. & Zhang, P. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono. Sci. Rep. 7, 5367 (2017). https://doi.org/10.1038/s41598-017-05721-2.

  • 55.

    Kobe, R. K., Iyer, M. & Walters, M. B. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91, 166–179 (2010).

    PubMed  Article  Google Scholar 

  • 56.

    Li, W. B. et al. Effects of nitrogen enrichment on tree carbon allocation: A global synthesis. Glob. Ecol. Biogeogr. 29, 573–589 (2020).

    Article  Google Scholar 

  • 57.

    Wang, T. et al. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China. For. Ecol. Manage. 196, 267–274 (2004).

    Article  Google Scholar 

  • 58.

    Li, J., Yutao, Z., Li, J., Li, X. & Lu, J. Effect of stimulated nitrogen deposition on the fine root decomposition and related nutrient release of Picea schrenkiana var. tianshanica. Acta Bot. Boreal. Occident. Sin. 35, 0182–0188 (2015) (in chinese).

    Google Scholar 

  • 59.

    Bremner, J. & Mulvaney, R. Urease Activity in Soils (Academic Press, London, 1978).

    Google Scholar 

  • 60.

    Liu, Y. et al. Nitrogen addition alleviates microbial nitrogen limitations and promotes soil respiration in a subalpine coniferous forest. Forests 10, 16 (2019).

    Google Scholar 

  • 61.

    Bao, S. N. Soil Agrochemical Analysis 20–38 (China Agricultural Press, Beijing, 2000) (in Chinese).

    Google Scholar 

  • 62.

    Buysse, J. & Merckx, R. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 44, 1627–1629 (1993).

    CAS  Article  Google Scholar 

  • 63.

    Su, L. et al. Soil and fine roots ecological stoichiometry in different vegetation restoration stages in a karst area, southwest China. J. Environ. Manag. 252, 109694 (2019).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Predator-induced defence in a dinoflagellate generates benefits without direct costs

    Movement behavior of a solitary large carnivore within a hotspot of human-wildlife conflicts in India