Barker HA, Taha SM. Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol. 1942;43:347–63.
Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol. 2016;50:2796–810.
Béchamp MA. Lettre de m. A. Béchamp a m. Dumas. Ann Chim Phys 1868;4:103–11.
Weimer PJ, Stevenson DM. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol. 2012;94:461–6.
Kenealy WR, Waselefsky DM. Studies on the substrate range of Clostridium kluyveri – the use of propanol and succinate. Arch Microbiol. 1985;141:187–94.
Barker HA, Kamen MD, Bornstein BT. The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium kluyveri. Proc Natl Acad Sci USA. 1945;31:373–81.
Bornstein BT, Barker HA. The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids. J Biol Chem. 1948;172:659–69.
Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittimatter A, et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA. 2008;105:2128–33.
Gonzalez-Cabaleiro R, Lema JM, Rodriguez J, Kleerebezem R. Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energy Environ Sci. 2013;6:3780–9.
Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT. Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol. 2014;27:115–22.
Rittmann BE & McCarty PL. Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Education: New York; 2001.
Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K. The energy metabolism of Clostridium kluyveri. Eur J Biochem. 1968;4:173–80.
Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. I. Preparation of cell-free extracts that catalyze the conversion of ethanol and acetate to butyrate and caproate. J Biol Chem. 1949;180:1085–93.
Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. VI. Reactions of acyl phosphates. J Biol Chem. 1950;184:769–93.
Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ Sci. 2011;4:216–24.
Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci. 2012;5:8189–92.
Cavalcante WD, Leitao RC, Gehring TA, Angenent LT, Santaella ST. Anaerobic fermentation for n-caproic acid production: A review. Process Biochem. 2017;54:106–19.
De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Medium chain carboxylic acids from complex organic feedstocks by mixed culture fermentation. Molecules 2019;24:398.
Schievano A, Sciarria TP, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, et al. Electro-fermentation – merging electrochemistry with fermentation in industrial applications. Trends Biotechnol. 2016;34:866–78.
Jourdin L, Raes SMT, Buisman CJN, Strik D. Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Front Energy Res. 2018;6:7.
Candry P, Huang SL, Carvajal-Arroyo JM, Rabaey K, Ganigue R. Enrichment and characterisation of ethanol chain elongating communities from natural and engineered environments. Sci Rep. 2020;10:1–10.
Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere 2020;30:25–39.
Rui JP, Peng JJ, Lu YH. Succession of bacterial populations during plant residue decomposition in rice field soil. Appl Environ Microbiol. 2009;75:4879–86.
Tsutsuki K, Ponnamperuma FN. Behavior of anaerobic decomposition in submerged soils – effect of organic material amendment, soil properties, and temperature. Soil Sci Plant Nutr. 1987;33:13–33.
Roy R, Kluber HD, Conrad R. Early initiation of methane production in anoxic rice soil despite the presence of oxidants. FEMS Microbiol Ecol. 1997;24:311–20.
Adeleke R, Nwangburuka C, Oboirien B. Origins, roles and fate of organic acids in soils: a review. S Afr J Bot. 2017;108:393–406.
Mohana Rangan S, Mouti A, LaPat-Polasko L, Lowry GV, Krajmalnik-Brown R, Delgado A. Synergistic zero-valent iron (Fe0) and microbiological trichloroethene and perchlorate reductions are determined by the concentration and speciation of Fe. Environ Sci Technol. 2020;54:14422–31.
Delgado AG, Kang D-W, Nelson KG, Fajardo-Williams D, Miceli JF, III, Done HY, et al. Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS ONE. 2014;9:e100654.
Delgado AG, Fajardo-Williams D, Popat SC, Torres CI, Krajmalnik-Brown R. Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Appl Microbiol Biotechnol. 2014;98:2729–37.
Chen TF, Delgado AG, Yavuz BM, Maldonado J, Zuo Y, Kamath R, et al. Interpreting interactions between ozone and residual petroleum hydrocarbons in soil. Environ Sci Technol. 2017;51:506–13.
Esquivel-Elizondo S, Miceli J, Torres CI, Krajmalnik-Brown R. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation. Biotechnol Bioeng. 2018;115:341–50.
Delgado AG, Fajardo-Williams D, Kegerreis KL, Parameswaran P, Krajmalnik-Brown R. Impact of ammonium on syntrophic organohalide-respiring and fermenting microbial communities. mSphere. 2016;1:e00053–16.
Delgado AG, Fajardo-Williams D, Bondank E, Esquivel-Elizondo S, Krajmalnik-Brown R. Coupling bioflocculation of Dehalococcoides mccartyi to high-rate reductive dehalogenation of chlorinated ethenes. Environ Sci Technol. 2017;51:11297–307.
Esquivel-Elizondo S, Delgado AG, Krajmalnik-Brown R. Evolution of microbial communities growing with carbon monoxide, hydrogen, and carbon dioxide. FEMS Microbiol Ecol. 2017;93:fix076.
Xiaoyu Z, Yong T, Cheng L, Xiangzhen L, Na W, Wenjie Z, et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production. Sci Rep. 2015;5:14360.
Caporaso JG, Christian LL, William AW, Donna B-L, James H, Noah F, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–24.
Masella A, Bartram A, Truszkowski J, Brown D, Neufeld J. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. 2012;13:31.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–57.
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.
Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, et al. RESCRIPt: Reproducible sequence taxonomy reference database management for the masses. bioRxiv. 2020; https://doi.org/10.1101/2020.10.05.326504.
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST plus: architecture and applications. BMC Bioinform. 2009;10:1.
Kusel K, Drake HL. Acetate synthesis in soil from a Bavarian beech forest. Appl Environ Microbiol. 1994;60:1370–3.
Kusel K, Drake HL. Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl Environ Microbiol. 1995;61:3667–75.
Duddleston KN, Kinney MA, Kiene RP, Hines ME. Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product. Glob Biogeochem Cycles. 2002;16:11.1–9.
Thebrath B, Mayer HP, Conrad R. Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol Ecol. 1992;86:295–302.
Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Fact. 2012;11:128.
Kucek LA, Spirito CM, Angenent LT. High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energy Environ Sci. 2016;9:3482–94.
Volker AR, Gogerty DS, Bartholomay C, Hennen-Bierwagen T, Zhu HL, Bobik TA. Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology 2014;160:1513–22.
Grootscholten TIM, Steinbusch KJJ, Hamelers HVM, Buisman CJN. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresour Technol. 2013;135:440–5.
Reddy MV, Mohan SV, Chang YC. Medium-chain fatty acids (MCFA) production through anaerobic fermentation using Clostridium kluyveri: effect of ethanol and acetate. Appl Biochem Biotechnol. 2018;185:594–605.
Scarborough MJ, Lawson CE, Hamilton JJ, Donohue TJ, Noguera DR. Metatranscriptomic and thermodynamic insights into medium-chain fatty acid production using an anaerobic microbiome. mSystems 2018;3:6.
Bao S, Wang QY, Zhang PY, Zhang Q, Wu Y, Li F, et al. Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: insight into carbon balance and microbial community. Energies 2019;12:3720.
Spirito CM, Marzilli AM, Angenent LT. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction. Environ Sci Technol. 2018;52:13438–47.
Coma M, Vilchez-Vargas R, Roume H, Jauregui R, Pieper DH, Rabaey K. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environ Sci Technol. 2016;50:6467–76.
Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.
Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 2009;3:992–1000.
Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.
Hollister EB, Forrest AK, Wilkinson HH, Ebbole DJ, Malfatti SA, Tringe SG, et al. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production. Appl Microbiol Biotechnol. 2010;88:389–99.
Mackie RI, Aminov RI, Hu WP, Klieve AV, Ouwerkerk D, Sundset MA, et al. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol. 2003;69:6808–15.
Ye TR, Cai HY, Liu X, Jiang HL. Dominance of Oscillospira and Bacteroides in the bacterial community associated with the degradation of high-concentration dimethyl sulfide under iron-reducing condition. Ann Microbiol. 2016;66:1199–206.
Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24:523–4.
Clarke RTJ. Niche in pasture-fed ruminants for the large rumen bacteria Oscillospira, Lampropedia, and Quin’s and Eadie’s ovals. Appl Environ Microbiol. 1979;37:654–7.
Lee GH, Rhee MS, Chang DH, Lee J, Kim S, Yoon MH, et al. Oscillibacter ruminantium sp nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol. 2013;63:1942–6.
Iino T, Mori K, Tanaka K, Suzuki KI, Harayama S. Oscillibacter valericigenes gen. nov., sp nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol. 2007;57:1840–5.
Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria – From metagenomic species to metabolic features. Environ Microbiol. 2017;19:835–41.
Wang H-J, Dai K, Wang Y-Q, Wang H-F, Zhang F, Zeng RJ. Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors. Bioresour Technol. 2018;267:650–6.
Fraj B, Ben Hania W, Postec A, Hamdi M, Ollivier B, Fardeau ML. Fonticella tunisiensis gen. nov., sp nov., isolated from a hot spring. Int J Syst Evol Microbiol. 2013;63:1947–50.
Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandezgarayzabal J, Garcia P, et al. The phylogeny of the genus Clostridium – Proposal of 5 new genera and 11 new species combinations. Int J Syst Bacteriol. 1994;44:812–26.
BS Jeon, Kim BC, Um Y, et al. BI. Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol. 2010;88:1161–7.
Zhu XY, Zhou Y, Wang Y, Wu TT, Li XZ, Li DP, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels. 2017;10:102.
Robertson WJ, Bowman JP, Franzmann PD, Mee BJ. Desulfosporosinus meridiei sp nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol. 2001;51:133–40.
Lee YJ, Romanek CS, Wiegel J. Desulfosporosinus youngiae sp nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int J Syst Evol Microbiol. 2009;59:2743–6.
Source: Ecology - nature.com