in

The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions

  • 1.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    PubMed  Article  Google Scholar 

  • 4.

    Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. Challenges and approaches in microbiome research: from fundamental to applied. Front. Plant Sci. 9, 1205 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Finzi, A. C. et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob. Change Biol. 21, 2082–2094 (2015).

    ADS  Article  Google Scholar 

  • 7.

    Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).

    CAS  Article  Google Scholar 

  • 8.

    Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).

    CAS  Article  Google Scholar 

  • 9.

    Paterson, E., Gebbing, T., Abel, C., Sim, A. & Telfer, G. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol. 173, 600–610 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156, 989–996 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).

    CAS  Article  Google Scholar 

  • 13.

    Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L. & Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 33, 540–552 (2019).

    Article  Google Scholar 

  • 14.

    Sharma, A., Johri, B. N., Sharma, A. K. & Glick, B. R. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem. 35, 887–894 (2003).

    CAS  Article  Google Scholar 

  • 15.

    Vaid, S. K., Kumar, B., Sharma, A., Shukla, A. K. & Srivastava, P. C. Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J. Soil Sci. Plant Nutr. 22 (2014).

  • 16.

    Goteti, P. K., Emmanuel, L. D. A., Desai, S. & Shaik, M. H. A. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int. J. Microbiol. 2013, 1–7 (2013).

    Article  CAS  Google Scholar 

  • 17.

    Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4 (2013).

  • 18.

    Narendra Babu, A., Jogaiah, S., Ito, S., Kestur Nagaraj, A. & Tran, L.-S.P. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 231, 62–73 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Inderbitzin, P. et al. Soil Microbiomes associated with verticillium wilt-suppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology 108, 31–43 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Simpson, D. The Economic Importance of Strawberry Crops. In The Genomes of Rosaceous Berries and Their Wild Relatives (eds Hytönen, T. et al.) 1–7 (Springer, Berlin, 2018). https://doi.org/10.1007/978-3-319-76020-9_1.

    Google Scholar 

  • 21.

    Food and Agriculture Organization of the United Nations (FAO). FAO Global Statistical Yearbook. (2018).

  • 22.

    California Department of Food and Agriculture. California Agricultural Statistics Review 2017–2018. (2018).

  • 23.

    Holmes, G. J., Mansouripour, S. M. & Hewavitharana, S. Strawberries at the Crossroads: Management of Soilborne Diseases in California without Methyl Bromide. Phytopathology PHYTO-11-19-0406-IA (2020) https://doi.org/10.1094/PHYTO-11-19-0406-IA.

  • 24.

    Lloyd, M. Growing for the future: Collective action, land stewardship and soilborne pathogens in California strawberry production. Calif. Agric. 70, 101–103 (2016).

    Article  Google Scholar 

  • 25.

    Koike, S. T. Crown Rot of Strawberry Caused by Macrophomina phaseolina in California. Plant Dis. 92 (2018).

  • 26.

    Guthman, J. Land access and costs may drive strawberry growers’ increased use of fumigation. Calif. Agric. 71, 184–191 (2017).

    Article  Google Scholar 

  • 27.

    Shaw, D. V., Gubler, D. & Hansen, J. Field resistance of California strawberries to Verticilium dahliae at three conidial inoculum concentrations. HortScience 32, 711–713 (1997).

    Article  Google Scholar 

  • 28.

    Shaw, D. V., Gordon, T. R., Hansen, J. & Kirkpatrick, S. C. Relationship between the extent of colonization by Verticillium dahliae and symptom expression in strawberry (Fragaria × ananassa ) genotypes resistant to verticillium wilt. Plant Pathol. 59, 376–381 (2010).

    Article  Google Scholar 

  • 29.

    Antanaviciute, L. et al. Mapping QTL associated with Verticillium dahliae resistance in the cultivated strawberry (Fragaria × ananassa). Hortic. Res. 2, 15009 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Besbes, F., Habegger, R. & Schwab, W. Induction of PR-10 genes and metabolites in strawberry plants in response to Verticillium dahliae infection. BMC Plant Biol. 19, 128 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Sánchez, S., Henríquez, J. L., Urcola, L. A., Scott, A. & Gambardella, M. Susceptibility of strawberry cultivars to root and crown rot caused by Macrophomina phaseolina. J. Berry Res. 6, 345–354 (2016).

    Article  CAS  Google Scholar 

  • 32.

    Pastrana, A. M., Basallote-Ureba, M. J., Aguado, A. & Capote, N. Potential inoculum sources and incidence of strawberry soilborne pathogens in Spain. Plant Dis. 101, 751–760 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Viejobueno, J., Ramallo, A. C., Kirschbaum, D. S., Baino, O. M. & Salazar, S. M. Severe outbreaks of strawberry crown and root charcoal rot caused by Macrophomina phaseolina in Tucumán, Argentina. 5 (2017).

  • 34.

    Mendes, L. W., Raaijmakers, J. M., de Hollander, M., Mendes, R. & Tsai, S. M. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 12, 212–224 (2018).

    PubMed  Article  Google Scholar 

  • 35.

    Yao, H. & Wu, F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt: Soil microbial community structure in cucumber rhizosphere. FEMS Microbiol. Ecol. 72, 456–463 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018).

    CAS  Article  Google Scholar 

  • 37.

    Lee, S. A. et al. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci. Rep. 9, 9300 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Edwards, K. R., Kaštovská, E., Borovec, J., Šantrůčková, H. & Picek, T. Species effects and seasonal trends on plant efflux quantity and quality in a spruce swamp forest. Plant Soil 426, 179–196 (2018).

    CAS  Article  Google Scholar 

  • 39.

    Brisson, V. L., Schmidt, J. E., Northen, T. R., Vogel, J. P. & Gaudin, A. C. M. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Sci. Rep. 9, 15611 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. 115, 7368–7373 (2018).

    PubMed  Article  Google Scholar 

  • 42.

    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Dennis, P. G., Miller, A. J. & Hirsch, P. R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? Root exudates and rhizosphere bacteria. FEMS Microbiol. Ecol. 72, 313–327 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248, 43–59 (2003).

    CAS  Article  Google Scholar 

  • 45.

    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. 110, 6548–6553 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 46.

    Youseif, S. H. Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Ann. Agric. Sci. 63, 25–35 (2018).

    Article  Google Scholar 

  • 47.

    Rolli, E. et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait: Root bacteria protect plants from drought. Environ. Microbiol. 17, 316–331 (2015).

    PubMed  Article  Google Scholar 

  • 48.

    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Chakraborty, U. & Chakraborty, B. N. Interaction of Rhizobium leguminosarum and Fusarium solani f.sp. pisi on pea affecting disease development and phytoalexin production. Can. J. Bot. 67, 1698–1701 (1989).

    CAS  Article  Google Scholar 

  • 51.

    Tonelli, M. L., Figueredo, M. S., Rodríguez, J., Fabra, A. & Ibañez, F. Induced systemic resistance -like responses elicited by rhizobia. Plant Soil https://doi.org/10.1007/s11104-020-04423-5 (2020).

    Article  Google Scholar 

  • 52.

    Alami, Y., Achouak, W., Marol, C. & Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393–3398 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    García-Fraile, P. et al. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7, e38122 (2012).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Perin, L. et al. Diazotrophic burkholderia species associated with field-grown maize and sugarcane. Appl. Environ. Microbiol. 72, 3103–3110 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Caballero-Mellado, J., Onofre-Lemus, J., Estrada-de los Santos, P. & Martinez-Aguilar, L. The tomato rhizosphere, an environment rich in nitrogen-fixing burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73, 5308–5319 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Van Deynze, A. et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLOS Biol. 16, e2006352 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 57.

    Nallanchakravarthula, S., Mahmood, S., Alström, S. & Finlay, R. D. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry. PLoS ONE 9, e111455 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 58.

    Gu, Y. et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol. Fertil. Soils 52, 997–1005 (2016).

    CAS  Article  Google Scholar 

  • 59.

    Dudenhöffer, J., Scheu, S. & Jousset, A. Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J. Ecol. 104, 1566–1575 (2016).

    Article  CAS  Google Scholar 

  • 60.

    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0412-1 (2020).

    Article  PubMed  Google Scholar 

  • 62.

    Snelders, N. C. et al. A Plant Pathogen Utilizes Effector Proteins for Microbiome Manipulation. (2020). https://doi.org/10.1101/2020.01.30.926725.

  • 63.

    Franke-Whittle, I. H., Manici, L. M., Insam, H. & Stres, B. Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. Plant Soil 395, 317–333 (2015).

    CAS  Article  Google Scholar 

  • 64.

    Fu, L. et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 104, 39–48 (2017).

    CAS  Article  Google Scholar 

  • 65.

    Morrissey, R. F., Dugan, E. P. & Koths, J. S. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol. Biochem. 8, 23–28 (1976).

    CAS  Article  Google Scholar 

  • 66.

    Zhao, F. et al. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil 440, 491–505 (2019).

    CAS  Article  Google Scholar 

  • 67.

    Trivedi, P. et al. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol. Biochem. 111, 10–14 (2017).

    CAS  Article  Google Scholar 

  • 68.

    Cha, J.-Y. et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10, 119–129 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Butterfield, E. J. Reassessment of soil assays for Verticillium dahliae. Phytopathology 77, 1073 (1977).

    Article  Google Scholar 

  • 70.

    Kabir, Z., Bhat, R. G. & Subbarao, K. V. Comparison of media for recovery of Verticillium dahliae from soil. Plant Dis. 88, 49–55 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Mihail, J. D. Macrophomina. In Methods for Research on Soilborne Phytopathogenic Fungi 134–136 (American Phytopathological Society, Saint Paul).

  • 72.

    U.S. EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils (1996).

  • 73.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 74.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucl. Acids Res. 42, D633–D642 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Clarke, K. R. & Warwik, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-e Ltd, Plymouth, 2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running