in

There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk

  • 1.

    Sherman, P. W. & Billing, J. Darwinian gastronomy: why we use spices: spices taste good because they are good for us. BioScience 49, 453–463 (1999).

    Article  Google Scholar 

  • 2.

    Billing, J. & Sherman, P. W. Antimicrobial functions of spices: why some like it hot. Q. Rev. Biol. 73, 3–49 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Galton, F. Comment on ‘On a method of investigating the development of institutions; applied to laws of marriage and descent’ by E. B. Tylor. J. Anthropol. Inst. Gt Br. Irel. 18, 245–272 (1889).

    Google Scholar 

  • 4.

    Bromham, L., Hua, X., Cardillo, M., Schneemann, H. & Greenhill, S. J. Parasites and politics: why cross-cultural studies must control for relatedness, proximity and covariation. R. Soc. Open Sci. 5, 181100 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Mace, R. & Holden, C. J. A phylogenetic approach to cultural evolution. Trends Ecol. Evol. 20, 116–121 (2005).

    PubMed  Article  Google Scholar 

  • 6.

    Freckleton, R. P. & Jetz, W. Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proc. R. Soc. B 276, 21–30 (2008).

    Article  Google Scholar 

  • 7.

    Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H. & Bromham, L. The ecological drivers of variation in global language diversity. Nat. Commun. 10, 2047 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Ohtsubo, Y. Adaptive ingredients against food spoilage in Japanese cuisine. Int. J. Food Sci. Nutr. 60, 677–687 (2009).

    PubMed  Article  Google Scholar 

  • 9.

    Murray, D. R. & Schaller, M. Historical prevalence of infectious diseases within 230 geopolitical regions: a tool for investigating origins of culture. J. Cross Cult. Psychol. 41, 99–108 (2010).

    Article  Google Scholar 

  • 10.

    Sherman, P. W. & Hash, G. A. Why vegetable recipes are not very spicy. Evol. Hum. Behav. 22, 147–163 (2001).

    PubMed  Article  Google Scholar 

  • 11.

    Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12, e1001923 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Lewnard, J. A., Lo, N. C., Arinaminpathy, N., Frost, I. & Laxminarayan, R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature 581, 94–99 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    McMichael, A. J. & Beaglehole, R. The changing global context of public health. Lancet 356, 495–499 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).

    PubMed  Article  Google Scholar 

  • 15.

    Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011).

    Article  Google Scholar 

  • 16.

    Johnell, O., Borgstrom, F., Jonsson, B. & Kanis, J. Latitude, socioeconomic prosperity, mobile phones and hip fracture risk. Osteoporos. Int. 18, 333–337 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Kanis, J. A. et al. Variations in latitude may or may not explain the worldwide variation in hip fracture incidence. Osteoporos. Int. 23, 2401–2402 (2012).

    Article  Google Scholar 

  • 18.

    Fisman, D. et al. Geographical variability in the likelihood of bloodstream infections due to Gram-negative bacteria: correlation with proximity to the equator and health care expenditure. PLoS ONE 9, e114548 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Coccia, M. The effect of country wealth on incidence of breast cancer. Breast Cancer Res. Treat. 141, 225–229 (2013).

    PubMed  Article  Google Scholar 

  • 20.

    Buchter, B., Dunkel, M. & Li, J. Multiple sclerosis: a disease of affluence? Neuroepidemiology 39, 51–56 (2012).

    PubMed  Article  Google Scholar 

  • 21.

    Roberts, S. & Winters, J. Linguistic diversity and traffic accidents: Lessons from statistical studies of cultural traits. PLoS ONE 8, e70902 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article  Google Scholar 

  • 25.

    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Dunn, R. R., Davies, T. J., Harris, N. C. & Gavin, M. C. Global drivers of human pathogen richness and prevalence. Proc. R. Soc. B 277, 2587–2595 (2010).

    PubMed  Article  Google Scholar 

  • 27.

    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645 (2007).

    PubMed  Article  Google Scholar 

  • 28.

    Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014).

    PubMed  Article  Google Scholar 

  • 29.

    Just, M. G. et al. Global biogeographic regions in a human‐dominated world: the case of human diseases. Ecosphere 5, 1–21 (2014).

    Article  Google Scholar 

  • 30.

    Morand, S., Owers, K. & Bordes, F. in Confronting Emerging Zoonoses (eds Yamada, A. et al.) 27–41 (Springer, 2014).

  • 31.

    Turner, J. Spice: the History of a Temptation (Alfred A. Knopf, 2004).

  • 32.

    Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Portnoy, S. in The SAGE Encyclopedia of Food Issues Vol. 1 (ed. Albala, K.) 84–86 (SAGE Publications, 2015).

  • 34.

    Jain, A., Rakhi, N. & Bagler, G. Analysis of food pairing in regional cuisines of India. PLoS ONE 10, e0139539 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Zhu, Y.-X. et al. Geography and similarity of regional cuisines in China. PLoS ONE 8, e79161 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Kline, M. A., Shamsudheen, R. & Broesch, T. Variation is the universal: making cultural evolution work in developmental psychology. Philos. Trans. R. Soc. B 373, 20170059 (2018).

    Article  Google Scholar 

  • 37.

    Bagler, G. CulinaryDB (Indraprastha Institute of Information Technology Delhi, 2017); https://cosylab.iiitd.edu.in/culinarydb/

  • 38.

    Iranshahy, M. & Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—a review. J. Ethnopharmacol. 134, 1–10 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Nakamura, Y. et al. Comparison of the glucosinolate–myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J. Agric. Food Chem. 56, 2702–2707 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Gupta, S. & Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 12, 600–609 (2011).

    CAS  Article  Google Scholar 

  • 41.

    Devi, K. P., Suganthy, N., Kesika, P. & Pandian, S. K. Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 8, 1 (2008).

    Article  CAS  Google Scholar 

  • 42.

    Cox, S., Abu-Ghannam, N. & Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220 (2010).

    CAS  Google Scholar 

  • 43.

    Lipkin, A. et al. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66, 2426–2431 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Maiyo, Z., Ngure, R., Matasyoh, J. & Chepkorir, R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr. J. Biotechnol. 9, 3178–3182 (2010).

    Google Scholar 

  • 45.

    Dan, S. Antibacterial activity of paeonol in vitro. Her. Med. 9, 009 (2012).

    Google Scholar 

  • 46.

    Uddin, G., Sadat, A. & Siddiqui, B. S. Phytochemical screening, in vitro antioxidant and antimicrobial activities of the crude fractions of Paeonia emodi Wall. Ex Royle. Middle East J. Sci. Res. 17, 367–373 (2013).

    Google Scholar 

  • 47.

    Joung, Y.-M. et al. Antioxidative and antimicrobial activities of lilium species extracts prepared from different aerial parts. Korean J. Food Sci. Technol. 39, 452–457 (2007).

    Google Scholar 

  • 48.

    He, J., Chen, L., Heber, D., Shi, W. & Lu, Q.-Y. Antibacterial compounds from Glycyrrhiza uralensis. J. Nat. Prod. 69, 121–124 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Dhingra, V., Pakki, S. R. & Narasu, M. L. Antimicrobial activity of artemisinin and its precursors. Curr. Sci. 78, 709–713 (2000).

    CAS  Google Scholar 

  • 50.

    Gupta, V. K. et al. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 116, 377–380 (2008).

    PubMed  Article  Google Scholar 

  • 51.

    Chen, C. et al. Chemical composition and antimicrobial and DPPH scavenging activity of essential oil of Toona sinensis (A. Juss.) Roem from China. BioResources 9, 5262–5278 (2014).

    Google Scholar 

  • 52.

    Arzanlou, M. & Bohlooli, S. Introducing of green garlic plant as a new source of allicin. Food Chem. 120, 179–183 (2010).

    CAS  Article  Google Scholar 

  • 53.

    Shittu, L. et al. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic micro-organisms. Iran. J. Pharmacol. Ther. 6, 165–170 (2008).

    Google Scholar 

  • 54.

    Medina, E., Romero, C., Brenes, M. & de Castro, A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 70, 1194–1199 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).

    Article  Google Scholar 

  • 56.

    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).

  • 57.

    GADM Maps and Data (GADM, 2012); https://www.gadm.org

  • 58.

    Bivand, R. et al. rgeos: interface to geometry engine—open source (GEOS) v.0.3-21 https://cran.r-project.org/package=rgeos (2016).

  • 59.

    Bromham, L. Curiously the same: swapping tools between linguistics and evolutionary biology. Biol. Philos. 32, 855–886 (2017).

    Article  Google Scholar 

  • 60.

    Mace, R. & Pagel, M. The comparative method in anthropology. Curr. Anthropol. 35, 549–564 (1994).

    Article  Google Scholar 

  • 61.

    Harvey, P. H. & Pagel, M. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).

  • 62.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  • 63.

    Miller, M. A. & Paige, J. C. Other food borne infections. Vet. Clin. North Am. Food Anim. Pract. 14, 71–89 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Fisman, D. N. & Laupland, K. Guess who’s coming to dinner? Emerging foodborne zoonoses. Can. J. Infect. Dis. Med. Microbiol. 21, 8–10 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Sookias, R. B., Passmore, S. & Atkinson, Q. D. Deep cultural ancestry and human development indicators across nation states. R. Soc. Open Sci. 5, 171411 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Johnson, P. C. D., Barry, S. J. E., Ferguson, H. M. & Muller, P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol. Evol. 6, 133–142 (2015).

    PubMed  Article  Google Scholar 

  • 67.

    O’Hagan, A. Kendall’s Advanced Theory Of Statistics Vol. 2B: Bayesian Inference (Halsted, 1994).

  • 68.

    Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B: 277, 1185–1192 (2010).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running