in

Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species

  • 1.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar 

  • 3.

    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Michener, C. D. The Bees of the World. (The Johns Hopkins University Press, 2007).

  • 5.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science (80-. ). 313, 351–354 (2006).

  • 6.

    Nieto, A. et al. European Red List of Bees. IUCN Global Species Programm (Publication Office of the European Union, 2014). https://doi.org/10.2779/77003.

  • 7.

    Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).

    Article 

    Google Scholar 

  • 8.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).

    Article 

    Google Scholar 

  • 9.

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).

    Article 

    Google Scholar 

  • 10.

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science (80-. ). 347, 1255957 (2015).

  • 11.

    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. U. S. A. 99, 16812–16816 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Mullin, C. A. et al. High levels of miticides and agrochemicals in north American apiaries: implications for honey bee health. PLoS ONE 5, e9754 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Tosi, S., Costa, C., Vesco, U., Quaglia, G. & Guido, G. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ. 615, 208–218 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Cedergreen, N. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 9, e96580 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Thompson, H. M., Fryday, S. L., Harkin, S. & Milner, S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45, 545–553 (2014).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Carnesecchi, E. et al. Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. Environ. Int. 133, 105256 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Sgolastra, F. et al. Bees and pesticide regulation: Lessons from the neonicotinoid experience. Biol. Conserv. 241, 108356 (2020).

    Article 

    Google Scholar 

  • 18.

    Arena, M. & Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23, 324–334 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Uhl, P., Awanbor, O., Schulz, R. S. & Brühl, C. A. Osmia bicornis is rarely an adequate regulatory surrogate species. Comparing its acute sensitivity towards multiple insecticides with regulatory Apis mellifera endpoints . bioRxiv 366237 (2018). https://doi.org/10.1101/366237.

  • 20.

    Heard, M. S. et al. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species?. Sci. Total Environ. 578, 357–365 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Biddinger, D. J. et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS One 8, e72587 (2013).

  • 22.

    Robinson, A. et al. Comparing bee species responses to chemical mixtures: Common response patterns?. PLoS ONE 12, e0176289 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    FAO. Fluxapyroxad (256). 659–926 (2015). Available at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation12/Fluxapyroxad.pdf.

  • 24.

    Bénit, P. et al. Evolutionarily conserved susceptibility of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the impact of SDHIs on human cultured cells. PLoS ONE 14, e0224132 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance fluxapyroxad (BAS 700 F). EFSA J. 10, 2522 (2012).

  • 26.

    Sierotzki, H. & Scalliet, G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103, 880–887 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Zhu, Y. et al. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J. Agric. Food Chem. 59, 2950–2957 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Sparks, T. C. et al. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Physiol. 107, 1–7 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Brown, M. J. F. et al. A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ 4, e2249 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Siviter, H., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561, 109–112 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Siviter, H., Horner, J., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor exposure reduces egg laying in bumblebees Bombus terrestris. J. Appl. Ecol. 57, 160–169 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Siviter, H. et al. No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ 7, e7208 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Cheng, Y. et al. A semi-field study to evaluate effects of sulfoxaflor on honey bee (Apis mellifera). Bull. Insectol. 71, 225–233 (2018).

    Google Scholar 

  • 34.

    Zhu, Y. C., Yao, J., Adamczyk, J. & Luttrell, R. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS ONE 12, e0176837 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Zhu, Y. C., Yao, J., Adamczyk, J. & Luttrell, R. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera). PLoS ONE 12, e0178421 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Thompson, H. M., Wilkins, S., Harkin, S., Milner, S. & Walters, K. F. A. Neonicotinoids and bumblebees (Bombus terrestris): effects on nectar consumption in individual workers. Pest Manag. Sci. 71, 946–950 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Cresswell, J. E. et al. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology 115, 365–371 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Azpiazu, C. et al. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Sci. Rep. 9, 13770 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Berenbaum, M. R. & Johnson, R. M. Xenobiotic detoxification pathways in honey bees. Curr. Opin. Insect Sci. 10, 51–58 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Therneau, T. M. Package ‘ survival ’. (2020).

  • 41.

    Demidenko, E. & Miller, T. W. Statistical determination of synergy based on Bliss definition of drugs independence. PLoS ONE 14, 1–22 (2019).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Casida, J. E. Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annu. Rev. Entomol. 63, 125–144 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Matsuda, K., Ihara, M. & Sattelle, D. B. Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annu. Rev. Pharmacol. Toxicol. 60, 241–255 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees-a risk assessment. PLoS ONE 9, e94482 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Sgolastra, F. et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag. Sci. 73, 1236–1243 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. An Int. J. 22, 1050–1064 (2016).

  • 47.

    Lambert, O. et al. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS ONE 8, e67007 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Iwasa, T., Motoyama, N., Ambrose, J. T. & Roe, R. M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee. Apis mellifera. Crop Prot. 23, 371–378 (2004).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Sgolastra, F. et al. Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proc. R. Soc. B Biol. Sci. 285, 20180887 (2018).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Tosi, S. & Nieh, J. C. Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivantow), on honeybees. Proc. R. Soc. B Biol. Sci. 286, 20190433 (2019).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Johnson, R. M., Dahlgren, L., Siegfried, B. D. & Ellis, M. D. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 8, e54092 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science (80-. ). 356, 1395–1397 (2017).

  • 53.

    Uhl, P., Awanbor, O., Schulz, R. S. & Brühl, C. A. Osmia bicornis is rarely an adequate regulatory surrogate species. Comparing its acute sensitivity towards multiple insecticides with regulatory Apis mellifera endpoints. PLoS One 14, e0201081 (2019).

  • 54.

    Beadle, K. et al. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. 1–19 (2019).

  • 55.

    Hayward, A. et al. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    EPA. Ecological Risk Assessment for the Registration Review of Sulfoxaflor. United States Environ. Prot. Agency (2019).

  • 57.

    EFSA. Peer review of the pesticide risk assessment for the active substance sulfoxaflor in light of confirmatory data submitted. EFSA J. 17, e05633 (2019).

  • 58.

    Mundy-Heisz, K. A., Prosser, R. S. & Raine, N. E. Acute oral toxicity and risks of exposure to the neonicotinoid thiamethoxam, and other classes of systemic insecticide, for the Common Eastern Bumblebee (Bombus impatiens). bioRxiv (2020). https://doi.org/10.1101/2020.01.27.921510.

  • 59.

    EFSA. European Food Safety Authority. Guidance on the risk assessment of plant protection products on bees (Apis mellifera , Bombus spp. and solitary bees). EFSA J. 11, 3295 (2013).

  • 60.

    Sgolastra, F. et al. Pesticide exposure assessment paradigm for solitary bees. Environ. Entomol. 48, 22–35 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Gradish, A. E. et al. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): implications for risk assessments. Environ. Entomol. 48, 12–21 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Chan, D. S. W., Prosser, R. S., Rodríguez-Gil, J. L. & Raine, N. E. Assessment of risk to hoary squash bees (Peponapis pruinosa) and other ground-nesting bees from systemic insecticides in agricultural soil. Sci. Rep. 9, 1–13 (2019).

    Google Scholar 

  • 63.

    Boyle, N. K. & Pitts-Singer, T. L. Assessing blue orchard bee (Osmia lignaria) propagation and pollination services in the presence of honey bees (Apis mellifera) in Utah tart cherries. PeerJ 7, e7639 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Franklin, E. L. & Raine, N. E. Moving beyond honeybee-centric pesticide risk assessments to protect all pollinators. Nat. Ecol. Evol. 3, 1373–1375 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    OECD. Test No. 213: Honeybees, Acute Oral Toxicity Test. (OECD Guidelines for the Testing of Chemicals, Section 2, 1998). https://doi.org/10.1787/9789264070165-en.

  • 66.

    OECD. Test No. 247: Bumblebee, Acute Oral Toxicity Test. (OECD Guidelines for the Testing of Chemicals, Section 2, 2017). https://doi.org/10.1787/9789264284128-en.

  • 67.

    Medrzycki, P. et al. Standard methods for toxicology research in Apis mellifera. J. Apic. Res. 52, 1–60 (2013).

    Article 
    CAS 

    Google Scholar 

  • 68.

    Brandt, A. et al. Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L. Sci. Rep. 10, 4670 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Ladurner, E., Bosch, J., Maini, S. & Kemp, W. P. A method to feed individual bees (Hymenoptera: Apiformes) known amounts of pesticides. Apidologie 34, 597–602 (2003).

    Article 

    Google Scholar 

  • 70.

    Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Package ‘survminer’. The Comprehensive R Archive Network (2020).

  • 71.

    Oller, R. & Langohr, K. FHtest : An R Package for the Comparison of Survival Curves with Censored Data . J. Stat. Softw. 81, (2017).

  • 72.

    Robertson, J. L., Russell, R. M., Preisler, H. K. & Savin, N. E. Bioassays with Arthropods. (CRC Press, 2007).

  • 73.

    Jonker, M. J., Svendsen, C., Bedaux, J. J. M., Bongers, M. & Kammenga, J. E. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ. Toxicol. Chem. 24, 2701–2713 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water