in

Variable inter and intraspecies alkaline phosphatase activity within single cells of revived dinoflagellates

  • 1.

    Gobler CJ, Doherty OM, Hattenrath-Lehmann TK, Griffith AW, Kang R, Litaker W. Ocean warming has expanded niche of toxic algae. Proc Natl Acad Sci USA. 2017;114:4975–80.

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Olivieri ET. Colonization, adaptations and temporal changes in diversity and biomass of a phytoplankton community in upwelled water off the Cape Peninsula, South Africa, in December 1979. South Afr J Mar Sci. 1983;1:77–109.

    Article  Google Scholar 

  • 3.

    Irwin AJ, Zoe V, Finkel ZV, Müller-Karger FE, Troccoli, Ghinaglia L. Phytoplankton adapt to changing ocean environment. Proc Natl Acad Sci USA. 2015;112:5762–6.

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Chivers W, Walne A, Hays G. Mismatch between marine plankton range movements and the velocity of climate change. Nat Commun. 2017;8:14434.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Gisselson L, Granéli E, Pallon J. Variation in cellular nutrient status within a population of Dinophysis norvegica (Dinophyceae) growing in situ: single – cell elemental analysis by use of a nuclear microprobe. Limnol Oceanogr. 2001;5. https://doi.org/10.4319/lo.2001.46.5.1237.

  • 6.

    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508. https://doi.org/10.1038/nrmicro3491.

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Núñez-Milland DR, Baines SB, Vogt S, Twining BS. Quantification of phosphorus in single cells using synchrotron X-ray fluorescence. J Synchrotron Radiat. 2010;17:560–6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Berthelot H, Duhamel S, L’Helguen S, Maguer JF, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62. https://doi.org/10.1038/s41396-018-0285-8.

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Štrojsová A, Vrba J. Short-term variation in extracellular phosphatase activity: possible limitations for diagnosis of nutrient status in particular algal populations. Aquat Ecol. 2009;43:19–25.

    Article  CAS  Google Scholar 

  • 10.

    O’Donnell DR, Hamman CR, Johnson EC, Kremer CT, Klausmeier CA, Litchman E. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob Change Biol. 2018;24:4554–65.

    Article  Google Scholar 

  • 11.

    Jin P, Agustí S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci Rep. 2018;8:17771. https://doi.org/10.1038/s41598-018-36091-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature. 2004;427:145–8.

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Urban MC. Accelerating extinction risk from climate change. Science. 2015;348:571–3.

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Kottuparambil S, Jin P, Agusti S. Adaptation of Red Sea Phytoplankton to experimental warming increases their tolerance to toxic metal exposure. Front Environ Sci. 2019;7. https://doi.org/10.3389/fenvs.2019.00125.

  • 15.

    Flores-Moya A, Costas E, Lopez-Rodas V. Roles of adaptation, chance and history in the evolution of the dinoflagellate Prorocentrum triestinum. Naturwissenschaften. 2008;95:697–703.

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Flores-Moya A, Rouco M, García-Sánchez MJ, García-Balboa C, González R, Costas E, et al. Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification. Ecol Evol. 2012;2:1251–9. https://doi.org/10.1002/ece3.198.

    Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Martiny AC, Ustick LA, Garcia C, Lomas MW. Genomic adaptation of marine phytoplankton populations regulates phosphate uptake. Limnol Oceanogr. 2019. https://doi.org/10.1002/lno.11252.

  • 18.

    Ribeiro S, Berge T, Lundholm N, Andersen TJ, Abrantes F, Ellegaard M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat Commun. 2011;2:311.

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Delebecq G, Schmidt S, Ehrhold A, Latimier M, Siano R. Revival of ancient marine dinoflagellates using molecular biostimulation. J Phycol. 2020;56:1077–89.

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Ribeiro S, Berge T, Lundholm N, Ellegaard M. Hundred years of environmental change and phytoplankton ecophysiological variability archived in coastal sediments. PLoS ONE. 2013;8:e61184.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Klouch KZ, Schmidt S, Andrieux Loyer F, Le Gac M, Hervio-Heath D, Qui-Minet ZN, et al. Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France). FEMS Microbiol Ecol. 2016;92:1–16.

    Article  CAS  Google Scholar 

  • 22.

    Lundholm N, Ribeiro S, Godhe A, Rostgaard Nielsen L, Ellegaard M. Exploring the impact of multidecadal environmental changes on the population genetic structure of a marine primary producer. Ecol Evol. 2017;7:3132–42.

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nat Geosci. 2013;6:701–10.

    CAS  Article  Google Scholar 

  • 24.

    Labry C, Herbland A, Delmas D. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. J Plankt Res. 2002;24:97–117.

    CAS  Article  Google Scholar 

  • 25.

    Girault M, Arakawa H, Hashihama F. Phosphorus stress of microphytoplankton community in the western subtropical North Pacific. J Plankt Res. 2013;35:146–57.

    CAS  Article  Google Scholar 

  • 26.

    Ramos JBE, Schulz KG, Voss M, Narciso Á, Müller MN, Reis FV, et al. Nutrient-specific responses of a phytoplankton community: a case study of the North Atlantic Gyre. Azores J Plankt Res. 2017;39:744–61.

    Article  CAS  Google Scholar 

  • 27.

    Lin S, Litaker RW, Sunda WG. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol. 2016;52:10–36.

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Lomas MW, Swain A, Shelton R, Ammerman JW. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol Oceanogr. 2004;49:2303–10.

    Article  Google Scholar 

  • 29.

    Wang D, Huang B, Liu X, Liu G, Wang H. Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass. Acta Oceano Sin. 2014;33:124–35.

    Article  CAS  Google Scholar 

  • 30.

    Cembella AD, Antia NJ, Harrison PJ. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. CRC Crit Rev Microbiol. 1984;10:317–91.

    CAS  Article  Google Scholar 

  • 31.

    Cooper A, Bowen ID, Lloyd D. The properties and subcellular localization of acid phosphatases in the colourless alga Polytomella caeca. J Cell Sci. 1974;15:605–18.

    CAS  PubMed  Google Scholar 

  • 32.

    Duhamel S, Björkman KM, Van Wambeke F, Moutin T, Karl DM. Characterization of alkaline phosphatase activity in the North and South Pacific Subtropical Gyres: Implications for phosphorus cycling. Limnol Oceanogr. 2011;56:1244–54.

    CAS  Article  Google Scholar 

  • 33.

    Kang W, Wang ZH, Liu L, Guo X. Alkaline phosphatase activity in the phosphorus-limited southern Chinese coastal waters. J Environ Sci. 2019;86:38–49.

    Article  Google Scholar 

  • 34.

    Girault M, Beneyton T, Pekin D, Buisson L, Bichon S, Charbonnier C, et al. High-content screening of plankton alkaline phosphatase activity in microfluidics. Anal Chem. 2018;90:4174–81. https://doi.org/10.1021/acs.analchem.8b00234.

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Anderson RA, Berges RA, Harrison PJ, Watanabe MM. Appendix A – recipes for freshwater and seawater media; enriched natural seawater media. In Andersen RA, editor. Algal culturing techniques. San Diego, USA: Academic; 2005. p. 429–538.

  • 36.

    Guillard RL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962;8:229–39.

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70:4974–84.

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Girault M, Hattori A, Kim H, Arakawa H, Matsuura K, Odaka M, et al. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. Sci Rep. 2017;7:40072. https://doi.org/10.1038/srep40072.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Girault M, Odaka M, Kim H, Matsuura K, Terazono H, Yasuda K. Particle recognition in microfluidic applications using a template matching algorithm. JPN J Appl Phys. 2016;55. https://doi.org/10.7567/JJAP.55.06GN05.

  • 40.

    Urvoy M, Labry C, Delmas D, Creac’h L, L’Helguen S. Microbial enzymatic assays in environmental water samples: impact of Inner Filter Effect and substrate concentrations. Limnol Oceanogr Methods. 2020;18:728–38.

    Article  CAS  Google Scholar 

  • 41.

    Huang Z, Terpetschnig E, You W, Haugland RP. 2-(2′-phosphoryloxyphenyl)-4-(3H)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases. Anal Biochem. 1992;207:32–39.

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Girault M, Hattori A, Kim H, Matsuura K, Odaka M, Terazono H et al. Algorithm for the precise detection of single and cluster cells in microfluidic applications. Cytom Part A. 2016. https://doi.org/10.1002/cyto.a.22825.

  • 43.

    Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36.

    CAS  Article  Google Scholar 

  • 44.

    Hoppe HG. Phosphatase activity in the sea. Hydrobiologia. 2003;493:187–200.

    CAS  Article  Google Scholar 

  • 45.

    Golda-VanEeckhoutte RL, Roof LT, Needoba JA, Peterson DT. Determination of intracellular pH in phytoplankton using the fluorescent probe, SNARF, with detection by fluorescence spectroscopy. J Microbiol Methods. 2018;152:109–18.

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Kruskopf MM, Du Plessis S. Induction of both acid and alkaline phosphatase activity in two green-algae (chlorophyceae) in low N and P concentrations. Hydrobiologia. 2004;513:59–70.

    CAS  Article  Google Scholar 

  • 47.

    Štrojsová A, Vrba J, Nedoma J, Komárková J, Znachor P. Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol. 2003;38:295–306.

    Article  CAS  Google Scholar 

  • 48.

    Skelton HM, Parrow MW, Burkholder JM. Phosphatase activity in the heterotrophic dinoflagellate Pfiesteria shumwayae. Harmful Algae 2006;5:395–406.

    CAS  Article  Google Scholar 

  • 49.

    Nedoma J, Štrojsová A, Vrba J, Komárková J, Simek K. Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ Microbiol. 2003;5:462–72.

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Young EB, Tucker RC, Pansch LA. Alkaline phosphatase in freshwater Cladophora-epiphyte assemblages: regulation in response to phosphorus supply and localization. J Phycol. 2010;46:93–101.

    CAS  Article  Google Scholar 

  • 51.

    Díaz-de-Quijano D, Felip M. A comparative study of fluorescence-labelled enzyme activity methods for assaying phosphatase activity in phytoplankton. A possible bias in the enzymatic pathway estimations. J Micro Meth. 2011;86:104–7.

    Article  CAS  Google Scholar 

  • 52.

    Ou L, Huang B, Lin L, Hong H, Zhang F, Chen Z. Phosphorus stress of phytoplankton in the Taiwan Strait determined by bulk and single-cell alkaline phosphatase activity assays. Mar Ecol Prog Ser. 2006;327:95–106.

    CAS  Article  Google Scholar 

  • 53.

    Huang B, Ou L, Wang X, Huo W, Li R, Hong H, et al. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquat Micro Ecol. 2007;49:195–206.

    Article  Google Scholar 

  • 54.

    Ivančić I, Pfannkuchen M, Godrijan J, Djakovac T, Pfannkuchen DM, Korlević M, et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog Oceanogr. 2016;146:175–86.

    Article  Google Scholar 

  • 55.

    González-Gil S, Keafer B, Jovine JMR, Aguileral A, Lu S, Anderson DM. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar Ecol Prog Ser. 1998;164:21–35.

    Article  Google Scholar 

  • 56.

    Dyhrman ST, Ruttenberg KC. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol Oceanogr. 2006;51. https://doi.org/10.4319/lo.2006.51.3.1381.

  • 57.

    Flynn K, Jones KJ, Flynn KJ. Comparisons among species of Alexandrium (Dinophyceae) grown in nitrogen- or phosphorus-limiting batch culture. Mar Biol. 1996;126:9–18.

    CAS  Article  Google Scholar 

  • 58.

    Perry MJ. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar Biol. 1972;15:113–9.

    CAS  Article  Google Scholar 

  • 59.

    Dyhrman ST, Palenik B. Phosphate stress in cultures and field populations of the dinoflagellate prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Appl Environ Microbiol. 1999;65:3205–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Mulholland MR, Floge S, Carpenter EJ, Capone DG. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp. Mar Ecol Prog Ser. 2002;239:45–55.

    CAS  Article  Google Scholar 

  • 61.

    Thomson B, Wenley J, Currie K, Hepburn C, Herndl GJ, Baltar F. Resolving the paradox: Continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Mar Chem. 2019;214:103671.

    CAS  Article  Google Scholar 

  • 62.

    Foster RA, Sztejrenszus S, Kuypers MMM. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J Phycol. 2013;49:502–16.

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Dyhrman ST, Palenik B. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. J Plankton Res. 2003;25:1215–25.

    CAS  Article  Google Scholar 

  • 64.

    Oh SJ, Yamammoto T, Kataoka Y, Matsuda O, Matsuyama Y, Katani Y. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish Sci. 2002;68:416–24.

    CAS  Article  Google Scholar 

  • 65.

    Jauzein C, Labry C, Youenou A, Quéré J, Delmas D, Collos Y. Growth and phosphorus uptake by the toxic dinoflagellate Alexandrium catenella (Dinophycea) in response to phosphate limitation. J Phycol. 2010;46:926–36.

    CAS  Article  Google Scholar 

  • 66.

    Elgavish A, Halmann M, Berman T. A comparative study of phosphorus utilization and storage in batch cultures of Peridinium cinctum, Pediastrum duplex and Cosmarium sp., from Lake Kinneret (Israel). Phycologia. 1982;21:47–54.

    CAS  Article  Google Scholar 

  • 67.

    Flynn K, Franco JM, Fernandez P, Reguera B, Zapata M, Wood G, et al. Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Mar Ecol Prog Ser. 1994;111:99–109.

    CAS  Article  Google Scholar 

  • 68.

    Ou L, Wang D, Huang B, Hong H, Qi Y, Lu S. Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. J Plankton Res. 2008;30:1007–17.

    CAS  Article  Google Scholar 

  • 69.

    Droop MR. The nutrient status of algal cells in continuous culture. J Mar Biol Ass UK. 1974;54:825–55.

    CAS  Article  Google Scholar 

  • 70.

    Bechemin C, Grzebyk D, Hachame F, Hummert C, Maestrini S. Effect of different nitrogen/phosphorus nutrient ratios on the toxin content in Alexandrium minutum. Aquat Micro Ecol. 1990;20:157–65.

    Article  Google Scholar 

  • 71.

    Labry C, Erard–Le Denn E, Chapelle A, Fauchot J, Youenou A, Crassous MP, et al. Competition for phosphorus between two dinoflagellates: A toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra. J Exp Mar Biol Ecol. 2008;358:124–35.

    CAS  Article  Google Scholar 

  • 72.

    Chapelle A, Labry C, Sourisseau M, Lebreton C, Youenou A, Crassous MP. Alexandrium minutum growth controlled by phosphorus An applied model. J Mar Syst. 2010;83:181–91.

    Article  Google Scholar 

  • 73.

    Sakshaug E, Granéli E, Elbrächter M, Kayser H. Chemical composition and alkaline phosphatase activity of nutrient-saturated and P-deficient cells of four marine dinoflagellates. J Exp Mar Biol Ecol. 1984;11:241–54.

    Article  Google Scholar 

  • 74.

    Lirdwitayaprasit T, Okaichi T, Montani S, Ochi T, Anderson DM. Changes in cell chemical con~position during the life cycle of Scrippsiella trochoidea (Dinophyceae). J Phycol. 1990;26:299–306.

    CAS  Article  Google Scholar 

  • 75.

    Qi H, Wang J, Wang Z. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae. J Sea Res. 2013;80:1–11.

    Article  Google Scholar 

  • 76.

    Simon N, Cras AL, Foulon E, Lemée R. Diversity and evolution of marine phytoplankton. C R Biol. 2009;332:159–70.

    PubMed  Article  Google Scholar 

  • 77.

    Rengefors K, Kremp A, Reusch TBH, Wood AM. Genetic diversity and evolution in eukaryotic phytoplankton: revelations from population genetic studies. J Plankton Res. 2017;39:165–79.

    Google Scholar 

  • 78.

    Bendif EM, Nevado B, Wong ELY, Wong EL, Hagino K, Probert I, et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat Commun. 2019;10:4234.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 79.

    Thornton DCO. Individuals clones or groups? Phytoplankton behaviour and units of selection. Ethol Ecol Evol. 2002;14:165–73.

    Article  Google Scholar 

  • 80.

    Gerecht A, Romano G, Lanora A, d’Ippolito G, Cutignano A, Fontana A. Plasticity of Oxylipin metabolism among clones of the marine diatom Skeletonema marinoi (Bacillariophyceae). J Phycol. 2011;47:1050–6.

    CAS  PubMed  Article  Google Scholar 

  • 81.

    Lim PT, Leaw CP, Usup G, Kobiyama A, Koike K, Ogata T. Effects of light and temperature on growth, nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium tamiyavanichii and Alexandrium minutum (Dinophyceae). J Phycol. 2006;42:786–99.

    CAS  Article  Google Scholar 

  • 82.

    Van Mooy BA, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature. 2009;458:69–72.

    PubMed  Article  CAS  Google Scholar 

  • 83.

    Galbraith AD, Martiny AC. Simple mechanism for marine nutrient stoichiometry. Proc Natl Acad Sci USA. 2015;112:8199–204.

    CAS  PubMed  Article  Google Scholar 

  • 84.

    Berge T, Daugbjerg N, Hansen PJ. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae. 2012;20:101–10.

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats

    Reductions in CFC-11 emissions put ozone recovery back on track