in

Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene

  • 1.

    Walker, M. et al. Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes [online]. https://doi.org/10.18814/epiiugs/2018/018016 (2018).

  • 2.

    Liu, T., Lu, Y. & Zheng, H. Loess and the Environment. (China Ocean Press, 1985).

  • 3.

    An, Z. et al. Asynchronous Holocene optimum of the East Asian monsoon. Quat. Sci. Rev. 19, 743–762 (2000).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Dai, A. G. & Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Clim. Chang. 144, 519–533 (2017).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Zastrow, M. China’s tree-planting could falter in a warming world. Nature 573, 474–475 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–172 (2016).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Jin, G. & Liu, T. Mid-Holocene climate change in North China, and the effect on cultural development. Chin. Sci. Bull. 47, 408–413 (2002).

    Article 

    Google Scholar 

  • 8.

    Wang, Y. et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854–857 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Dong, J. et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China. Holocene 20, 257–264 (2010).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from Be-10 in loess. Science 360, 877–881 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Goldsmith, Y. et al. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales. Proc. Natl Acad. Sci. U. S. A. 114, 1817–1821 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Chen, F. et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 5, 11186 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Li, Q. et al. Reconstructed moisture evolution of the deserts in northern China since the Last Glacial Maximum and its implications for the East Asian Summer Monsoon. Glob. Planet. Change 121, 101–112 (2014).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Xu, Z. et al. Critical transitions in Chinese dunes during the past 12,000 years. Sci. Adv. 6, eaay8020 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Lu, H. et al. Late Quaternary aeolian activity in the Mu Us and Otindag dune fields (north China) and lagged response to insolation forcing. Geophys. Res. Lett. 32, L21716 (2005).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Peterse, F. et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet. Sci. Lett. 301, 256–264 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Yang, X. et al. Early-Holocene monsoon instability and climatic optimum recorded by Chinese stalagmites. Holocene 29, 1059–1067 (2019).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Wei, Y. et al. Holocene and deglaciation hydroclimate changes in northern China as inferred from stalagmite growth frequency. Glob. Planet. Change 195, 103360 (2020).

    Article 

    Google Scholar 

  • 20.

    Wang, B. et al. How to measure the strength of the East Asian Summer Monsoon. J. Clim. 21, 4449–4463 (2008).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Liu, J. et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite delta O-18 records. Earth-Sci. Rev. 148, 194–208 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Kutzbach, J. E. & Street-Perrott, F. A. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317, 130–134 (1985).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Liu, Z. et al. Chinese cave records and the East Asia Summer Monsoon. Quat. Sci. Rev. 83, 115–128 (2014).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Wen, X., Liu, Z., Wang, S., Cheng, J. & Zhu, J. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nat. Commun. 7, 11999 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science 325, 310–314 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    LeGrande, A. N. & Schmidt, G. A. Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim. Past 5, 441–455 (2009).

    Article 

    Google Scholar 

  • 27.

    Zhang, H. et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science 362, 580–583 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl Acad. Sci. U.S.A. 105, 1425–1430 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    He, C. et al. The hydroclimate footprint accompanying pan-Asian monsoon water isotope evolution during the last deglaciation. Sci. Adv. 7, eabe2611 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Wu, D. et al. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat. Sci. Rev. 193, 54–67 (2018).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Xiao, X., Yao, A., Hillman, A., Shen, J. & Haberle, S. G. Vegetation, climate and human impact since 20 ka in central Yunnan Province based on high-resolution pollen and charcoal records from Dianchi, southwestern China. Quat. Sci. Rev. 236, 106297 (2020).

    Article 

    Google Scholar 

  • 34.

    Ding, Q. & Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 18, 3483–3505 (2005).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M. & Oleson, K. W. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob. Chang. Biol. 9, 1543–1566 (2003).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Yamazaki, T., Yabuki, H., Ishii, Y., Ohta, T. & Ohata, T. Water and energy exchanges at forests and a grassland in Eastern Siberia evaluated using a one-dimensional land surface model. J. Hydrometeor. 5, 504–515 (2004).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Overpeck, J., Anderson, D., Trumbore, S. & Prell, W. The southwest Indian Monsoon over the last 18 000 years. Clim. Dyn. 12, 213–225 (1996).

    Article 

    Google Scholar 

  • 39.

    Ruddiman, W. F. What is the timing of orbital-scale monsoon changes? Quat. Sci. Rev. 25, 657–658 (2006).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Xu, Q. et al. Vegetation succession and East Asian Summer Monsoon Changes since the last deglaciation inferred from high-resolution pollen record in Gonghai Lake, Shanxi Province, China. Holocene 27, 835–846 (2017).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Xiao, J. et al. Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quat. Sci. Rev. 23, 1669–1679 (2004).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).

    Article 

    Google Scholar 

  • 45.

    Zheng, Z. et al. East Asian pollen database: modern pollen distribution and its quantitative relationship with vegetation and climate. J. Biogeogr. 41, 1819–1832 (2014).

    Article 

    Google Scholar 

  • 46.

    Song, C. et al. Simulation of China Biome reconstruction based on pollen data from surface sediment samples. Acta Botanica. Sin. 43, 201–209 (2001).

    Google Scholar 

  • 47.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 48.

    Overpeck, J. T., Webb, T. & Prentice, I. C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23, 87–108 (1985).

    Article 

    Google Scholar 

  • 49.

    Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 49–69 (1990).

    Article 

    Google Scholar 

  • 50.

    Peyron, O. et al. Climatic reconstruction in Europe for 18,000 YR B.P. from pollen data. Quat. Res. 49, 183–196 (1998).

    Article 

    Google Scholar 

  • 51.

    Davis, A. S., Brewer, S., Stevenson, A. C. & Guiot, J. The temperature of Europe during the Holocene reconstructed from pollen data. Quat. Sci. Rev. 22, 1701–1716 (2003).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Juggins, S. Rioja: analysis of quaternary science data. https://cran.r-project.org/package=rioja (2017).

  • 54.

    Prentice, C. et al. Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19, 117–134 (1992).

    Article 

    Google Scholar 

  • 55.

    Williams, W. & Shuman, B. Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset. Quat. Sci. Rev. 27, 669–687 (2008).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Simpson, G. L. “Analogue methods in palaeolimnology” in Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques, (eds Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P.) 495–522 (Springer, 2012).

  • 57.

    Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. & ter Braak, C. J. F. Diatoms and pH reconstruction. Philos. Trans. R. Soc. B 327, 263–278 (1990).

    ADS 

    Google Scholar 

  • 58.

    ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485–502 (1993).

    Article 

    Google Scholar 

  • 59.

    Collins, W. D. et al. The Community Climate System Model version 3 (CCSM3). J. Clim. 19, 2122–2143 (2006).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Berger, A. Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Peltier, W. R. Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 62.

    He, F. Simulating transient climate evolution of the last deglaciation with CCSM3. PhD thesis, University of Wisconsin-Madison (2011).

  • 63.

    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    He, F. et al. Northern hemisphere forcing of southern hemisphere climate during the last deglaciation. Nature 494, 81–85 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Liu, Z. et al. Younger Dryas cooling and the Greenland climate response to CO2. Proc. Natl Acad. Sci. U.S.A. 109, 11101–11104 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Liu, Z. et al. Evolution and forcing mechanisms of El Nino over the past 21,000 years. Nature 515, 550–553 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. U.S.A. 111, E3501–E3505 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    Study reveals plunge in lithium-ion battery costs